Нормальный уровень радиационного фона. Что такое радиационный фон

Современный человек постоянно подвержен излучению. Его издают бытовые приборы, модные гаджеты, линии электропередачи и другие объекты. Излучение принято делить на две группы: не ионизирующее и ионизирующее . Первая группа считается безопасной для человека. В нее входят радиоволны, тепло, ультрафиолет. Опасность представляет вторая группа, к которой и относится радиация. Чем же так опасно это излучение и каковы смертельные дозы радиации для человека.

Где можно столкнуться с радиацией

Радиация преследует человека повсюду. Сама земля имеет естественный радиационный фон . Он может различаться в зависимости от региона. Самый большой уровень радиации в нашей стране наблюдается в Алтайском крае . Но даже он настолько мал, что считается полностью безопасным. Гораздо опаснее искусственно созданные источники ионизирующего излучения, с которыми мы сталкиваемся достаточно часто:

  1. Рентгенографическое оборудование в больницах. Каждый год мы проходим флюорографическое обследование и подвергаемся облучению. Доза радиации в рентгенах мала и при однократном прохождении такой процедуры вред здоровью не наносится.
  2. Сканирующие устройства в аэропортах. Они действуют аналогично медицинскому рентгену. Лучи проходят сквозь тело человека, поэтому доза облучения крайне мала.
  3. Экраны старых телевизоров, оснащенных электронно-лучевыми трубками.
  4. Реакторы атомных электростанций. Это наиболее мощный источник. Пока он находится в целостности, особой опасности не представляет. Но любое его повреждение грозит глобальной катастрофой.
  5. Радиоактивные отходы. При их неправильной утилизации возможно заражение окружающей среды, которое несет в себе потенциальную опасность.

Нормальная доза радиации не несет в себе большой опасности для жизни или здоровья человека . При ее незначительном превышении развивается лучевая болезнь. Если же на человека воздействует большая доза облучения, наступает моментальная смерть.

Единица измерения радиации

С 1979 года была введенная новая единица измерения уровня радиации – зиверт . Она может обозначаться Зв или Sv. Один зиверт эквивалентен количеству энергии, которую поглощает один килограмм биологической ткани. Ранее единицей измерения излучения считался бэр. 1 зиверт равен 100 бэр.

Небольшие дозы облучения принято измерять в миллизивертах. Один зиверт равен тысяче миллизивертов.

Как измеряется радиация

Радиоактивность окружающего пространства напрямую влияет на состояние здоровья. Даже находясь у себя дома, человек может подвергаться негативному воздействию. Особенно опасны квартиры, в которых имеется посуда, изготовленная из кранового стекла, отделочные материалы с добавлением гранита или старая радиационная краска . При таких обстоятельствах важно периодически измерять радиационный фон.

Выявить опасный фон помогут специальные приборы – радиометры или дозиметры. Для эксплуатации в жилом помещении используют дозиметр. При помощи радиометра легко можно определить фон продуктов питания.

Сегодня существуют специальные организации, которые предоставляют услуги по определению радиационного заражения. Специалисты помогут выявить и утилизировать источники фона.

Можно приобрести и домашний дозиметр. Но быть на 100% уверенным в показаниях такого прибора нельзя. При его использовании необходимо строго следовать инструкции и не допускать контакта устройства с исследуемыми объектами. Если уровни радиации в помещениях окажутся недопустимыми, следует обратиться за помощью к профессионалам как можно скорее .

Степени воздействия радиации на человека

Разобраться в вопросе, какая доза радиации опасна для человека, поможет таблица.

Доза радиации, Зв Воздействие на человека
До 0,05 Допустимые дозы облучения. При таком воздействии негативных последствий для здоровья человека не наблюдается.
От 0,05 до 0,2 Симптомы лучевой болезни не проявляются. В будущем повышается вероятность развития онкологических заболеваний, а также генетических мутаций у потомства.
От 0,2 до 0,5 Негативной симптоматики не наблюдается. В крови уменьшается концентрация лейкоцитов.
От 0,5 до 1 Проявляются первые признаки лучевой болезни. У мужчин многократно повышается вероятность бесплодия.
От 1 до 2 Тяжелая форма лучевой болезни. Исходя из статистических данных, 10% людей, получивших такую дозу облучения, живут не более месяца. В первые 10 дней состояние пострадавшего стабильное, после чего происходит резкое ухудшение самочувствия.
От 2 до 3 Вероятность летального исхода в течение первого месяца повышается до 35%. Концентрация лейкоцитов крови падает до критических значений.
От 3 до 6 Сохраняется возможность излечения. Погибают около 60% пострадавших. Причиной смерти становится развитие инфекционных заболеваний и внутренние кровотечения.
От 6 до 10 Вероятность летального исхода – 100%. Излечиться в этом случае невозможно. Современной медицине удается отстрочить смерть максимум на год.
От 10 до 80 Человек впадает в глубокую кому. Смерть наступает спустя полчаса.
Более 80 Смерть от радиации наступает мгновенно.

Безопасным считается излучение, мощность которого не превышает 0,2 микрозиверта в час . Допустимая доза радиации для человека не превышает 0,05 Зв. Облучение выше этого показателя приводит к серьезным последствиям для здоровья. Годовая доза рентгеновского облучения в 0,05 Зв характерна для людей, работающих на атомных станциях при условии отсутствия каких-либо нештатных ситуаций.

Истории наших читателей

Владимир
61 год

При проведении местных медицинских процедур максимально разрешенная доза облучения для человека составляет 0,3 Зв. Норма облучения рентгеном в год не превышает двух процедур.

Роль играет не только мощность излучения, но и продолжительность воздействия. Низкое по силе воздействие, оказывающее влияние продолжительное время, окажется более губительным для здоровья, чем кратковременное сильное воздействие. Но это справедливо только в том случае, если речь не идет о смертельных дозах радиации.

Эффект накопления радиации


На протяжении жизни в организме человека может скапливаться от 100 до 700 микрозиверт радиации
. Такой показатель считается нормальным и не угрожает здоровью или жизни человека. При этом в год в теле может накапливаться о 3 до 4 микрозиверта.

Количество накопленной радиации во многом будет зависеть от внешних обстоятельств. Так, каждый рентгенографический снимок в кабинете стоматолога приносит 0,2 микрозиверта, проход через сканер аэропорта – 0,001 мЗв, флюорографическое исследование – 3 мЗв.

Когда развивается лучевая болезнь

Следствием воздействия критической дозы радиации на человека становится развитие лучевой болезни. Она поражает практически все системы организма . В зависимости от дозы излучения может поддаваться лечению или приводить к летальному исходу.

Согласно последним исследованиям, для появления лучевой болезни опасная доза радиации в год составляет 1,5 Зв. Предел допустимой дозы однократного облучения – 0,5 Зв. После этой отметки начинают проявляться признаки поражения.

Выделяют следующие формы лучевой болезни:

  1. Лучевая травма. Появляется, если дозировка разового излучения не превышала 1 Зв.
  2. Костномозговая форма. Опасные нормы – от 1 до 6 Зв. В половине случаев такая форма болезни приводит к летальному исходу.
  3. Желудочно-кишечная форма наблюдается при дозировке излучения от 10 до 20 Зв. Сопровождается внутренними кровотечениями, лихорадочным состоянием, развитием инфекционных поражений.
  4. Сосудистая форма. Развивается после облучения в пределах от 20 до 80 Зв. Происходят тяжелые гемодинамические нарушения.
  5. Церебральная форма. Наблюдается при облучении свыше 80 Зв. Происходит мгновенный отек мозга и смерть пострадавшего.

В некоторых случаях лучевая болезнь может перерастать в хроническую форму. Период ее формирования может занимать до трех лет . После этого происходит восстановление организма, которое длится еще три года. При правильной терапии результатом становится излечение. Но в некоторых случаях спасти пациента не удается.

Симптоматика лучевой болезни

Если нормальная доза радиации была превышена не критически, то появляются симптомы лучевой травмы. Среди них выделяют:

  • Приступы тошноты и рвоты.
  • Сухость слизистых поверхностей носоглотки.
  • Во рту ощущается вкус горечи.
  • Появляются сильные головные боли .
  • Пострадавший быстро устает, его покидают жизненные силы.
  • Снижается артериальное давление.

В случае превышения дозы облучения в 10 Зв наблюдаются следующие признаки:

  • Покраснение отдельных участков кожи. Со временем они приобретают синий оттенок.
  • Изменяется частота сокращения сердечной мышцы.
  • Снижается мышечный тонус.
  • Появляется тремор в пальцах.
  • Пропадает сухожильный рефлекс.

Спустя четыре дня выраженные симптомы пропадают. Заболевание переходит в скрытую форму. Ее продолжительность будет зависеть от степени поражения организма. При этом в значительной степени снижаются все рефлексы организма, проявляются симптомы невралгического характера.

Если доза облучения превышала 3 ЗВ, то спустя две недели начинается интенсивное облысение . При дозе выше 10 Зв заболевание сразу же переходит в третью фазу. Наблюдается серьезное изменение состава крови, развиваются инфекционные заболевания. В кратчайшие сроки наступает отек мозга, полностью пропадает мышечный тонус. В подавляющем большинстве случаев человек погибает.

При первых же подозрительных симптомах необходимо обратиться за помощью к врачу. Только при своевременной терапии сохраняется шанс на успешное излечение лучевой болезни.

Диагностика

Появление лучевой болезни выявляется на основании первичных признаков. Пристальное внимание уделяется пациентам, которые побывали в ситуации, когда превышена безопасная доза радиации.

Степень тяжести поражения определяется в ходе исследования образцов крови пострадавшего. Выясняется наличие анемии, ретикулоцитопении, лейкопении, СОЭ. О наличии лучевой болезни говорят признаки кровотечения в миелограмме .

В дополнение к исследованию крови проводят следующие диагностические мероприятия:

  1. Забор соскобов кожных язв и проведение микроскопии.
  2. УЗИ брюшной полости.
  3. УЗИ органов таза.

Одновременно с этим проводятся консультации с узкими специалистами: гематологом, эндокринологом, невропатологом и гастроэнтерологом . Они внимательно изучают клиническую картину болезни и результаты всех обследований.

Терапия лучевой болезни

Болезнь успешно лечится, если дозовый порог заражения превышен незначительно . Среди основных терапевтических методик можно выделить:

  1. Своевременное оказание первой помощи. Это особенно важно для людей, побывавших в месте сильного радиационного заражения. С пострадавшего снимают всю одежду, так как она накапливает в себе радиацию. Тщательно промывают тело и желудок.
  2. Медикаментозная терапия. Она включает в себя применение седативных, антигистаминных препаратов, антибиотиков, средств для восстановления желудочно-кишечного тракта. Кроме того, проводится лечение, направленное на восстановление иммунной системы. На третьей стадии заболевания прописывают, помимо прочего, антигеморрагические препараты.
  3. Переливание крови.
  4. Физиотерапия. Чаще всего применяется дыхание при помощи кислородной маски.
  5. В некоторых случаях специалисты проводят пересадку костного мозга.
  6. Правильное питание. В первую очередь организуется оптимальный питьевой режим. В день пострадавший должен выпивать не менее двух литров воды. В его рацион также должны входить соки и чай. При этом пить одновременно с приемом пищи нельзя. К минимуму сводится употребление жирных, жареных и чрезмерно соленых блюд. В день должно быть не менее пяти приемов пищи. Категорически запрещено употребление спиртных напитков.

Профилактические мероприятия

Для того чтобы не стать жертвой радиационного излечения, необходимо придерживаться следующих рекомендаций:

  1. Избегать потенциально опасных зон . При малейшем подозрении на то, что на территории максимальная доза радиации, следует незамедлительно покинуть это место и обратиться к специалистам.
  2. Людям, занятым на опасных производствах, рекомендуется употреблять витаминно-минеральные комплексы, а также другие препараты, поддерживающие иммунную систему. Выбор конкретных медикаментов должен проводиться совместно с лечащим врачом.
  3. При контакте с радиоактивными предметами необходимо использовать специализированные средства защиты: костюмы, респираторы и так далее.
  4. Пить как можно больше воды. Жидкость помогает вымывать из организма радиоактивные вещества .

Смертельная доза радиации в зивертах составляет всего 6 единиц. Поэтому при первых подозрениях на повышенный фон необходимо провести исследование при помощи дозиметра.

Радиационный фон

Радиационный фон — это уровень квантовых потоков и элементарных частиц в окружающей среде. Это понятие важно для человека в том случае, когда речь идет об ионизирующем излучении. В большом количестве оно представляет серьезную опасность для живых организмов. Если естественный радиационный фон (ЕРФ) местности не превышает допустимых норм, то на ней можно проживать, заниматься фермерством и употреблять в пищу дары природы. Когда ЕРФ повышенный, то в таких местах находиться нельзя, даже при соблюдении мер безопасности следует сократить время пребывания на зараженной территории до минимума. В некоторых случаях радиация приносит пользу человеку. С ее помощью проводится весьма успешное лечение онкологических заболеваний. Воздействие изотопов на растения, насекомых и животных позволяет выводить новые виды, отличающиеся набором положительных свойств.

Разновидности радиационного излучения

На естественный радиационный фон влияет количество элементарных частиц, которые ранее попали на местность или предмет и продолжают поступать из различных источников.

Современная наука различает такие виды излучения, которые непосредственно влияют на естественный радиационный фон:

  1. Гамма-излучение. Представляет собой поток микрочастиц с нейтральным зарядом. Обладает высокой проникающей способностью. Этот тип радиации наиболее губителен для всего живого. Защитой от рентгеновских лучей являются материалы, обладающие тяжелыми ядрами. Они задерживают гамма-частицы, становясь источником излучения.
  2. Бета-излучение. Его носителем являются более крупные частицы со средней проникающей способностью. Являясь потенциально опасными для людей, бета-лучи задерживаются в тонком слое металла, древесины и камня.
  3. Альфа-излучение. Является потоком тяжелых положительно заряженных частиц. Несут в себе мощный ионный заряд, обладающий разрушительным действием для клеток живых тканей. Что касается человека, то альфа-частицы поражают только внешний слой кожи. Преградой для них является даже одежда.

На земле источниками излучения, создающими естественный и искусственный радиационный фон, являются солнце, звезды, горные породы и промышленные объекты, возведенные человеком. Создают уровень заражения изотопы таких химических элементов, как йод, уран, радий, стронций, кобальт, цезий и плутоний. Зная, что такое радиация, можно успешно защищаться от такого опасного для жизни и здоровья явления.

Источники естественной радиации

До тех пор, пока Земля не обрела железного ядра и не получила импульса на вращение, она была открыта для всех типов радиоактивного излучения. После того как вокруг нашей планеты образовалось мощное магнитное поле, она обрела защиту от проникающей радиации. Губительный для всего живого солнечный ветер огибает Землю вдоль линий магнитного поля. На поверхность планеты попадает незначительная часть тяжелых альфа-частиц. Они представляют опасность только при длительном пребывании на солнце без защиты. Из-за этого возникает ожог кожи.

Определенную опасность представляют объемные выбросы энергии, производимые пульсарами. Эти космические объекты за одну секунду производят столько энергии, сколько Солнце вырабатывает за тысячу лет. От такого луча земная атмосфера не спасает.

Определенное влияние на формирование радиационного фона играет рельеф местности и состав грунта. Наиболее древней горной породой, сформировавшейся миллиарды лет назад, является гранит. Там, где этот минерал выходит на поверхность или находится под тонким слоем почвы, отмечается повышенный уровень радиации.

На уровень излучения влияет и высота над уровнем моря. С каждым километром подъема над землей уменьшается толщина защитного слоя атмосферы. Уже на высоте 10000 метров присутствует такой радиационный фон, норма которого близка к предельно допустимой.

В зависимости от географического положения меняется уровень радиации. На полюсах он значительно сильнее, чем на экваторе. Это явление обуславливается формой магнитного поля Земли, которое сходится на полюсах.

Характеристика грунта. Наибольший уровень радиации наблюдается в местах, где залегает урановая руда. Даже если месторождение этого химического элемента находится в нескольких километрах под землей, уровень его излучения может превышать предельно допустимый в разы. Небольшой фон могут создать железная руда и бокситы. Эти элементы имеют свойство накапливать радиацию.

Искусственная радиация на земле

Это явление представляет собой превышение естественного природного фона вследствие деятельности человека. История освоения атома начитывает несколько десятилетий. Поскольку эта область промышленности еще до конца не освоена, риск возникновения нештатных ситуаций достаточно велик.

Нормы радиационного фона могут быть превышены по таким причинам:

  1. Проведение испытаний ядерного оружия. Территория, где проводились испытания атомных бомб, насыщена радиоактивными изотопами. Она будет непригодна для жизни еще многие столетия.
  2. Использование атома в мирных целях. Ядерные заряды использовались для изменения русла рек, создания искусственных водоемов и для ликвидации пожаров на газовых месторождениях.
  3. Аварии на объектах атомной энергетики. Во время подобных инцидентов происходит выброс изотопов в атмосферу. В зависимости от масштаба аварии прилегающая территория становится непригодной для жизни на срок от 30 до 10000 лет.
  4. Происшествия во время транспортировки и захоронения ядерного топлива и отходов. В результате зараженный изотопами материал разносится по обширной территории.

В зависимости от степени радиоактивного заражения местности пребывание на ней может быть ограничено по времени или запрещено полностью.

Последствия радиоактивного заражения

Уровень радиации измеряется в количестве изотопов, полученных за единицу времени. Мощность излучения определяется в рентгенах в час, полученная доза вычисляется суммированием всех показателей за год. Эта составляющая измеряется в греях (Гр).

В зависимости от объема поглощенных организмом изотопов человек может получить лучевую болезнь:

  1. I степень. Заболевание не представляет опасности для человека при условии его эвакуации из зараженной зоны. Оно проявляется в виде слабости, головной боли, нарушении сна и аппетита. При получении дозы до 2 Гр выздоровление может наступить уже через полтора-два месяца.
  2. II степень. В случае получения дозы до 4 Гр наступает поражение средней тяжести. Больной испытывает острые боли, у него нарушается деятельность внутренних органов и центральной нервной системы. Внешне болезнь проявляется выпадением волос, зубов и образованием язв. Даже квалифицированное лечение не дает полного выздоровления.
  3. III степень. Доза 4-6 Гр вызывает необратимые процессы в организме человека. Болезнь тяжелой формы приводит к отказу внутренних органов и некрозу мягких тканей. Как правило, при сопутствующей потере иммунитета заболевание приводит к летальному исходу.
  4. IV степень. Тяжелая форма развивается при получении больным более 6 Гр. Описать симптомы, которые испытывают пациенты, не представляется возможным, так как их смерть наступала в считанные часы после облучения. Летальному исходу предшествовало полное нарушение структуры мягких тканей, остановка сердца и прекращение дыхания.

Лучевой травмой считается получение человеком дозы, величина которой составляет менее 1 Гр.

Действующие нормы радиационного фона

Нормы радиации являются усредненными, полученными по результатам клинических исследований больных, получивших дозы радиации различного уровня. Полученные суммарные дозы люди могут получать за разные промежутки времени. Чем больше сила излучения, тем опаснее могут быть последствия и сложнее лечение. Поэтому и определение, что такое нормальный радиационный фон, устанавливается на законодательном уровне и является величиной для регламентирования условий проживания или труда на предприятии.

Правила радиационной безопасности касаются таких категорий граждан:

  • военнослужащие, проходящие службу на атомных подводных лодках и надводных кораблях;
  • персонал АЭС;
  • люди, проживающие на территории с высоким радиационным фоном;
  • профессиональные спасатели и работники аварийных бригад, работающие на объектах атомной энергетики;
  • работники медицины, которые имеют дело с приборами, содержащими радиоактивные элементы;
  • ученые, работающие с радиоактивным материалом.

Согласно проведенным исследованиям, абсолютно безопасной для здоровья взрослого человека считается излучение мощностью 20 микрорентген в час.

Предельной границей радиации считается значение, равное 50 микрорентген в час. Однако, если в течение года, получая через равные промежутки времени небольшие дозы излучения, человек получит суммарно 1 рентген, то это будет для него практически безопасно. Радиация постепенно из организма выводится. Действующие сегодня нормы радиоактивной безопасности определяют предельную дозу полученного за жизнь облучения в пределах 60-70 рентген.

Если брать уровень воздействия радиационного фона и гамма-излучения в микрозивертах в час, то допустимой границей безопасности считается:

Опасной считается доза 11 мкЗв в час. Она повышает риск онкологических заболеваний.

/ Физическое здоровье

Зиверт, миллизиверт и микрозиверт

Измерение мощности излучения и полученной дозы при рентгенографии зубов.

Профилактика радиоактивных заблуждений - 2

С момента открытия рентгеновых лучей отношение к их использованию и, вообще, существованию у народа нашего, да и не нашего, менялось полярно - от радиоистерии до радиофобии. В первое время увлечение радиологией среди более-менее грамотного населения планеты было довольно распространенным явлением. В лабораторных условиях смонтировать примитивную трубку, испускающую катодные лучи, не так уж и сложно, и в начале прошлого века рентгеновы лучи в своих целях начали использовать не только врачи, но и всякого рода врачеватели, фокусники и шарлатаны. Естественно, без всякой защиты и понимания природы этого явления. Последствия не заставили себя долго ждать. Появились сообщения о поражениях кожи, костей и выяснилось, что причиной их возникновения стало бездумное использование примитивных генераторов Х-лучей. Люди стали относится к этому делу с осторожностью и настороженностью. Дальше была война, японцы и американцы со своими бомбами. В общем, в глазах общественности Хиросима окончательно испортила имидж лучевого воздействия на организм. Начался период радиофобии.

Однако, с развитием науки, высоких технологий и на фоне всеобщего поумнения народ потихоньку успокоился. На западе даже получила распространение так называемая теория радиационного гормезиса . Суть ее заключается примерно в том, что если большие дозы радиации оказывают неблагоприятное воздействие на живые организмы - угнетают деление клеток, рост и развитие, то малые дозы, наоборот, стимулируют практически все физиологические процессы.

Откуда взялось такое мнение? Ну, во-первых, сейчас ни для кого не секрет, что существует естественный радиационный фон и это такая же составная и неотъемлемая часть природы, как воздух, вода и солнечный свет. Жить без него нельзя. Вернее, можно, но мыши, изолированные от всякого фонового воздействия, чувствуют себя гораздо хуже своих вольных собратьев. То есть для организма воздействие естественного радиационного фона - это что-то вроде "халявной" энергетической подпитки. Кратковременное и однократное увеличение фона стимулирует многие процессы отвечающие за функционирование иммунитета и обновление клеток. Еще есть версия, что в далекой древности фон был многократно выше и, за счет мутагенного воздействия, образовалось множество разных тварей земных. Потом фон резко упал и за последние десять тысяч лет ни одного нового зайца или березы у Матушки Природы создать не получилось. Примерно так.

Есть у этой теории и ярые противники и их гораздо больше, чем сторонников. Противники эти придерживаются концепции линейного беспорогового эффекта радиации (ЛБЭ), согласно которой безвредных доз нет, вредны любые, но по-разному. Есть лимит установленный природой, а все, что свыше - уже лишнее, а значит - вредное. Разработал концепцию шведский физик Зиверт , он же придумал эффективную эквивалентную дозу, за что и был увековечен в качестве ее единицы.

Откуда же берется радиационный фон

Прежде всего, общий фон надо разделять на естественный природный и неестественный техногенный. Техногенный, понятно, фабрики, заводы, плюс электрификация всей страны и телевизор в каждый дом. Ну и медицина конечно. На медицинские исследования в среднем приходится до четверти всего суммарного годового воздействия .

В свою очередь, источниками радиации определяющими природный фон являются, как это не банально звучит - небо и земля. Из космоса на нас летят все мыслимые и не мыслимые виды излучения, способные испепелить на своем пути все живое. Однако, фильтруясь через атмосферу (особенно через многострадальный озоновый слой), на землю попадает, то что попадает и никакого воздействия мы не чувствуем. От земли навстречу неустанно поднимается газ радон, продукт распада радиоактивных элементов. Элементы эти в разных количествах есть под всей поверхностью земли и радон выделяется везде и постоянно - и в Антарктиде под пингвинами, и в Африке под пигмеями, и прямо сейчас у нас из подвала. Поэтому в душных подвальных помещениях радиационный фон всегда выше, чем на чердаке. Многие, наверное, обращали внимание, что в буржуйских фильмах, когда показывают подвалы небоскребов, там обязательно есть большие страшные вентиляторы - это они так с радоном борются. У нас в этом плане попроще: радон - не аммиак, глаз не щиплет, в нос не бьет, значит его вроде и нету. Так и живем.

Поскольку радиация не пахнет, ее присутствие приходится определять и измерять с помощью разнообразной дозиметрической аппаратуры. Некоторые индивидуумы иногда заявляют, что чувствуют изменения в своем организме даже при малейшем и кратковременном изменении радиационного фона, например, после ортопантомографии. Можно с уверенностью сказать, что это ни какая не сверхчувствительность, а просто истерика или вранье. В Хиросиме - там, конечно да, все резко почувствовали, а тут - не тот случай.

Для измерения мощности излучения и полученной дозы существует много разных единиц, но население наше между собой эти единицы, как правило, не различает и все, что связано с излучением меряют в "рентгенах". Рентгены у нас излучают, получают, их хватают, они летают, образуются и накапливаются. Сразу следует сказать, что рентген сейчас считается единицей внесистемной и вместо него официально используется "Кулон на килограмм" - Кл/кг. Однако Кулон , из-за некруглости своей, единица очень неудобная и поэтому, для разного рода расчетов до сих пор допускается использование единицы рентгена. В общем, рентген - это такое количество излучения, при воздействии которого в 1 кубическом сантиметре воздуха образуется 2,08х10 9 пар ионов. И всё. Остальное - не рентген.

В рентгенах измеряют количество генерированного излучения или экспозиционную дозу. То есть, это количество энергии, которое, можно сказать, в вашу сторону вылетело, и должно упасть, если ничем не предохраняться. То, что упало и уже не смоешь, называется поглощенной дозой и измеряется в Греях.

Грей - это 1 джоуль энергии на 1 кг живого веса. По старому 1 Гр равен 100 рад (Radiation Absorbed Dose) и получается при воздействии экспозиционной дозы в 100 рентген. Однако, рад , как и бэр (биологический эквивалент рентгена) - тоже единицы внесистемные и сейчас не используются. Вместо них используется Зиверт.

Что такое Зиверт

Вот если на человека (не дай Бог, конечно!) упал 1 Грей лучистой энергии, то, проникая во внутрь ткани, луч ослабляется за счет тканевого поглощения. В результате, грубо говоря, от целого упавшего на кожу "джоуля на килограмм", с учетом коэффициента тканевого ослабления, остается 0,85. Но уже внутри, в тканях - это и есть Зиверт. Доза, измеряемая в Зивертах, называется эквивалентной, то есть соответствующей определенному виду излучения (a, b, y, X-R).

Однако для рентгеновского излучения поглощенная и эквивалентная дозы считаются равными. Поступившая в ткани энергия проделывает определенную работу и способна вызвать в организме какой-либо эффект. Для оценки возможных эффектов, как скорых, так и вероятных отдаленных (стохастических) используют понятие - эффективная эквивалентная доза. Определяется она из расчета воздействия на весь организм путем нахождения среднего числа от эквивалентных доз, полученных двенадцатью самыми проблемными местами организма. Этими "местами" являются: половые железы, молочные и щитовидная железы, красный костный мозг, легкие, надпочечники, поверхность ближайшей костной ткани и еще 5 наиболее подверженных воздействию участков при данном виде исследования. В нашем случае это язык, глаз, слюнные железы, хрусталик и гипофиз.

Так что же, всё-таки такое 1 Зиверт?

Это такая эффективная эквивалентная доза, которая получается при поглощенной дозе в 1 Грей. А что такое 1 Грей - много или мало? Если поставить 100 нормальных здоровых мужиков и каждому одномоментно раздать по Грею, то велика вероятность того, что половина из них заболеет лучевой болезнью. Иначе говоря, поглощенная доза в 1 Гр в 50% случаев вызывает развитие лучевой болезни в различных ее проявлениях. Излечение при такой дозе происходит самопроизвольно. Абсолютно смертельная доза для человека - 6 Гр. Поэтому Грей, или то же самое Зиверт - это очень большая доза. Если не участвовать в ликвидации радиационных катастроф, не подвергаться лучевой терапии по поводу опухоли и не пытаться создать в сарае атомную бомбу - такую дозу вряд ли можно где-то просто так получить. Поэтому более широкое применение находят меньшие единицы.

Разделив 1 Зиверт на 1000 мы получаем миллизиверт. То есть 1 мЗв - это одна тысячная Зиверта.

Сколько это - 1 миллизиверт

Если убрать техногенный фон и забраться в самый экологически чистый район, где не делают флюорографию, не смердят кочегарки и не добывают уран - естественный фон там будет примерно 0,5-1,0 миллизиверт в год (1 мЗв). Предельно допустимой для жизнедеятельности человека величиной фона считается 5 мЗв в год. Если брать планету в целом, то средний естественный фон составляет 2 мЗв. Однако, "средняя температура по больнице" - совсем не означает, что во всех палатах одинаково прохладно. В Чернобльской зоне, в одном из многочисленных Боливийских Сан-Паулу и кое-где на юге Африки фон перехлестывает все мыслимые границы и - ничего, люди живут. Короче - 1 миллизиверт в год - это такая доза, которая считается абсолютно безопасной при добавлении ее к среднему естественному фону, и именно столько отпущено нам на год для проведения рентгенографии, согласно САНПИНу и НРБ. Но, миллизиверт, опять же, величина достаточно крупная. Например, обычная пленочная флюорография обеспечивает дозу около 0,5-0,8 миллизиверта. Поэтому, делим миллизиверт еще на тысячу. Получаем - микрозиверт.

Микрозиверт - 1 мкЗв

Это одна тысячная миллизиверта или одна миллионная Зиверта. То есть, пленочная флюорограмма равна 500-800 мкЗв, а цифровая 60 мкЗв. Компьютерная томограмма черепа, сделанная на пошаговом томографе обеспечивает 1000-15000 мкЗв, на современном спиральном - 400-500 мкЗв, а на челюстно-лицевом томографе с плоскостным сенсором, типа PICASSO или ACCUITOMO - 45-60 мкЗв. Почувствуйте разницу.

Где можно получить дозу в 1 микрозиверт

Если открыть "Taschenatlas der Zahnarztlichen Radiologie" Фридриха Паслера и Хайке Виссер, больше известную у нас в русском переводе как "Рентгенодиагностика в практике стоматолога", то где-то в середине книги можно найти информацию, что серия из 20 внутриротовых снимков, выполненных с помощью визиографа и современного рентгенодиагностического аппарата с круглым тубусом, обеспечивают эффективную эквивалентную дозу 21,7 мкЗв. Данные официально опубликованы в Германии в 2000 г. То есть, по немецким расчетам, один внутриротовой снимок зуба как раз и соответствует примерно одному микрозиверту. Вот, казалось бы, и всё. Но, имея пытливый ум, вредный характер и отягощенную Чернобылем историю, можно попробовать усомниться.

Измеряют стандартную эффективную эквивалентную дозу с помощью антропоморфных фантомов. Это такая кукла, сделанная из материала с коэффициентом поглощения как у мягких тканей человека (например, воск или резина). В места, где у человека находятся вышеперечисленные органы, помещают дозиметры, делают снимок исследуемой области, потом считывают показания и выводят среднее. Казалось бы - чего проще. Но, как выяснилось, у нас в стране большие проблемы с фантомами. Всяких разных много, но именно таких днем с огнем не сыщешь. Так что измерить достоверно эквивалентную эффективную дозу для каждого вида современной рентгенографии не так-то просто. Можно, конечно, попробовать договориться с моргом… Но лучше начнем с теории.

Отталкиваясь от знания того, что 75% лучистой энергии уходит прямо по направлению луча, особенно при близком положении объекта и генератора, можно утверждать, что при исследовании зубов верхней и нижней челюсти человек получает совершенно разную лучевую нагрузку.

При рентгенографии зубов нижней челюсти , луч направлен почти параллельно земле или даже снизу вверх, то есть в затылок, в макушку, в щеку, в общем, большинство жизненно важных органов и прочих гениталий остаются далеко сбоку.

И, наоборот, при исследовании зубов верхней челюсти луч направляется большей частью сверху вниз, то есть в аккурат за шиворот, где все это добро обычно и находится.

В те времена далекие, когда терапевтическая стоматология у нас была проста и однозначна, как солдатское белье, Ставицкий Р. В. проводил расчеты доз как раз на стоматологическом приеме при рентгенографии с помощью актюбинских рентгенодиагностических аппаратов 5Д-1 и 5Д-2. Судя по его цифрам, пациент получал от этих генераторов (а кое-где получает до сих пор) и советской пленки 29-47 мкЗв за один снимок при рентгенографии зубов верхней челюсти и 13-28 мкЗв нижней. То есть, нагрузка при исследовании зубов верхней челюсти практически в 2 раза выше, чем при работе с нижней. Та же пропорция наблюдается в рекомендациях некоторых производителей современной аппаратуры в отношении высокочувствительной пленки - 8-12 мкЗв верхняя челюсть и 4-7 мкЗв нижняя. Если учесть, что нагрузка при цифровой рентгенографии в среднем в 3 раза ниже, чем при пленочной, то, по грубым подсчетам, нагрузка при работе с радиовизиографом получается по максимуму 4 мкЗв для верхней челюсти и 2 мкЗв для нижней.

В общем, по немцам выходит, что в отпущенный нам на облучение 1 миллизиверт мы можем вложить тысячу внутриротовых снимков зубов (безусловно, с учетом того, что пациент в течение текущего года не будет проходить флюорографию и другие тяжелые лучевые обследования), а по нашим грубым подсчетам - 250-300. Вам столько надо? Нет, конечно!

О нюансах следует помнить

До сих пор речь шла об эффективной эквивалентной дозе из расчета на весь организм, однако в силу специфики обследования, эквивалентная доза, полученная половыми железами и слюнными - отличается в сотни раз! Наибольшую нагрузку при рентгенографии зубов избирательно получают язык, слюнные железы и хрусталик. Нагрузка на остальные органы либо идентична, либо меньше приведенной выше эффективной эквивалентной дозы. Эквивалентная доза для языка в 8 раз выше эффективной, слюнных желез - в 4, а хрусталика в 1,25 раза.

В то же время, без разницы - 1 мкЗв или 5 мкЗв - это дозы ничтожно малые дозы. Пять микрозивертов человек получает после трех часов сиденья перед обыкновенным телевизором и ничуть не "парится" по этому поводу. Понятие "малых доз" начинается после 100 000 мкЗв, поскольку первые минимальные подвижки в организме и негативные реакции на излучение, которые могут быть сразу же выявлены в условиях лаборатории, начинаются при дозе в 100 миллизивертов.

В общем, не стоит применять к своему мирному стоматкабинету такие понятия, которые используются на ядерном полигоне. Всё гораздо проще и светлей. Понятно, что в связи с чернобыльской трагедией, радиофобия для нашего народа - почти национальная черта, но тут, опять же, не тот случай. Конечно, перегнуть можно любую палку - даже самый небольшой генератор весит около пуда, и если голова у аппарата случайно открутится - можно сильно отбить ноги. А на вопрос пациента "Какую дозу я получил?" - вы можете добрым голосом ответить: "Маленькую. Очень маленькую!". И при этом никого не обманете! Так что, соблюдайте технику безопасности, действуйте согласно инструкции и всё будет хорошо!

Д.В.Рогацкин , врач-рентгенолог,
журнал «Профилактика», #3-2008

Ортопантомография

ОПТГ, или так называемый панорамный рентген. За несколько минут аппарат выдает обзорный снимок всей полости рта. Этот рентген предоставляет информацию о зубах, верхней и нижней челюстной кости, пазухах и других твердых и мягких тканях головы и шеи.


Ортопантомография, фото medpulse.ru

Панорамный рентген - важная часть полного зубного обследования. Его желательно делать один раз в пять - семь лет. Хотя он и не отображает многих деталей, как при снимках зубов и десен другими видами рентгена, все же он помогает предотвратить большинство потенциальных заболеваний.

Лилиана Локацкая

Для справки

Миллизиверты атомщиков и ликвидаторов

  • 50 миллизивертов - это годовая предельно допустимая доза облучения операторов на атомных объектах в "мирное время".
  • 250 миллизивертов - это предельно допустимая аварийная доза облучения для профессионалов-ликвидаторов. После получения такой дозы человеку, как правило, необходимо лечиться. Он уже никогда не должен быть допущен для работы на АЭС или других радиационно-опасных объектах.
  • 300 мЗв - такой уровень вызывает признаки лучевой болезни.
  • 4000 мЗв - это лучевая болезнь с вероятностью летального исхода, т.е. смерти.
  • 6000 мЗв - гибель облученного человека в течение нескольких дней.

1 миллизиверт (мЗв) = 1000 микрозивертов (мкЗв).

Сколько рентгенов в одном зиверте

Вадим Шулман , инженер-метролог

Таблица соответствия, соотношения микрорентген в час (мкр/ч) и микрозиверт в час (мкЗв/час):

Приблизительное соотношение микрозиверта и микрорентгена, а точного - не бывает

Если радиация только гамма-радиация, т.е. рентгеновское излучение, то
1 Sv == 1 Gy ≈ 115 R (при такой дозе облучения обычно вылечивают)
1 мкЗв == 1 мкГр ≈ 115 мкР (70 мЗв считается дозой облучения гражданского населения за всю жизнь)
1 микро-Зиверт/час == 1 микро-Грэй/час ≈ 115 микрорентген/час

1 миллиЗиверт/час ≈ 100 миллирентген/час

1 миллиЗиверт (mSv, мЗв) = 1000 микрозиверт (µSv, mkSv, мкЗв).

Понятно, что интерес к радиации - отнюдь не академический, а в связи с техногенными катастрофами и неуверенности в правдивости государственной и корпоративной информации.

Скажу так: если радиация пахнет озоном, ногти и волосы светятся в темноте, то как боевая/рабочая единица человек пофункционирует еще часов или суток несколько в зависимости от I-IV степени острай лучевой болезни (ОЛБ). Именно такими критериями оперирует радиология, а вовсе не:
здоровый образ жизни, не болеть
успешное развитие и образование ребенка
возможность произвести здоровое, жизнерадостное потомство и иметь внуков-правнуков
и вообще быть красивым, успешным, жить долго и счастливо.

Какая радиация допустима, а какая нет - вопрос философский. Кому-то для запуска болезни из скрытого состояния достаточно выйти на 5 минут голым на улицу, а кто-то после бани может с удовольствием 10 минут валяться в снегу.

Одно дело - скушать грамм урана-235, другое дело - ввести в кровь грамм раствора соли цезия-137, третье дело пройти мимо 10 тонн чистейщего урана-238 в герметичном контейнере, даже из оконного стекла

Я живу при радиации 5-15 микрорентен в час почти полвека, и ничего. Видел, что около радоновых источников тоже живут, при радиации в 35 мкр/ч. Не заметил, что намного счастливее. Но и заживо-гниющих светящихся местных жителей около радона тоже не встречал. Слухи "про повышенную онкологию" - встречал.

Но если я поднесу радиометр (к которым приклеилось ошибочное название "дозиметр") к образцу со цезием-137 (аппетитному грибу-маслёнку), и измеритель радиации покажет 35 мкр/ч, а потом унесу радиометр на 5 метров, и там показание будет 10 мкр/час, то... Выкину этот образец куда подальше, вопреки тому, что уровень радиации в 35 мкр/ч (0,35 мкЗиверт в час - вполне приемлем как фоновая радиоактивность )

Потому что грамм этого образца скорее всего фонит в 1000 раз больше, чем окружающая меня местность - телесные углы излучения образца и размеры датчика прибора, расстояние считайте сами. :)

Поэтому цифры радиации - это очень условные цифры с точки зрения здоровья. Если радиоактивность воды выше естественного фона, не пейте ее. Вдруг в воде вместо неусваиваемого радона окажется соль радионуклида с длинным периодом полураспада, и организм "эту радиацию" усвоит и расположит где-нибудь в жировых запасах. И будет потом этот радионуклид облучать всю укороченную жизнь, так сказать - "собственная радиация - всегда с тобой".

Так как при авариях реакторов выбрасываются тяжелые радионуклиды, то...

Тяжелые радионуклиды носятся в воздухе десятилетиями, в очень малой концентрации, но выпасть они могут очень концентрированно, а еще более концентрированно попасть в организм человека с едой. Хрестоматийные примеры: сало, грибы, молоко.

Так что если после ядерной катастрофы фон радиации повысился в пару раз в городе или селе N, расположенном в 3 тысячах километров от места катастрофы, а потом почти вернулся в норму... Лично я бы не спеша переехал в другое место. Но как узнать, а не прошло ли радиоактивное облако и там?

Шарик-то круглый... А я люблю дикие грибы.

(в статье исползованы собственные знания и опыт, а также цифры из Википедии - со всеми вытекающими последствиями)

последние изменения статьи 15мар2011, 22мар2011

Навигация по статье:

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения , иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час

  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час


  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников , является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

Для оценки влияния радиации на вещество (не живые ткани) , применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани , применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой .

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется - Кулон/кг (Кл/кг) .

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген - это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения . То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв) .

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр) : 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":

Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу , которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм

Наиболее объективная характеристика это - эквивалентная доза радиации , измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год .

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения , величиной 5 мЗв/год . Используемая формулировка в документах - "приемлемый уровень" , очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый .

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников . Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час . Это подробно рассмотрено в статье на этом сайте. Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год , а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются .

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час .
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников , является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час , действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь , по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.