Методы наблюдения и регистрации элементарных частиц. Камера Вильсона- Скобельцын, пузырьковая камера, счетчик Гейгера-Мюллера, счетчик Черенкова. Камера вильсона, или три нобелевские премии, добытые из тумана

Принцип действия приборов для регистрации элементарных частиц. Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, - выстрел.

Регистрирующий прибор - это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.

В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Газоразрядный счетчик Гейгера. Счетчик Гейгера - один из важнейших приборов для автоматического подсчета частиц.

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается - настолько, что разряд прекращается.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии).

В настоящее время созданы счетчики, работающие на и пых принципах.

Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это -неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами

конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека - ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины. Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.

Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Пузырьковая камера. В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженые частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). И качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика - около 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Треки в камере Вильсона и пузырьковой камере - один из главных источников информации о поведении и свойствах частиц.

Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

ЧЕРЕНКОВСКИЙ СЧЁТЧИК детектор для регистрации заряж. ч-ц, в к-ром используется Черенкова Вавилова излучение. При движении заряж. ч-цы в среде со скоростью v, превышающей фазовую скорость света c/n в данной среде (n - показатель преломления среды), ч-ца излучает в направлении, составляющем угол q с её траекторией. Угол q связан со скоростью ч-цы v и показателем преломления среды га соотношением: cosq=c/vn=1/bn, b=v/c. (1) Интенсивность W черенковского излучения на 1 см пути заряж. ч-цы в интервале длин волн от l1 до l2 выражается соотношением:


Похожая информация.


М. Новикова

Крохотные неуловимые частицы, испускаемые радиоактивными элементами! Масса их ничтожна; какими весами взвесить их! Скорость их колоссальна - до 10 тыс, км в сек, - разве можно уследить за их полетом! И все-таки это сделано: микрочастицы взвешены, измерены, «увидены». С помощью несложного в изготовлении прибора - так называемой камеры Вильсона - может «увидеть» их каждый.

Устройство этого прибора показано на рисунке.

Стенки камеры шириной 150 и высотой 80 мм делаются из стекла или плексигласа толщиной от 4 до 6 мм. Чтобы камера была герметична, стенки

должны быть хорошо склеены и притерты ко дну (2) и крышке (3). Между стенками и дном и между стенками и крышкой желательно поставить резиновые прокладки толщиной 1 - 2 мм (4). Дно камеры - это ровная плита из меди, латуни или дюралюминия размером 190 х 190 мм и толщиной 5-6 мм. Она привинчивается двенадцатью винтами к обойме (5), сделанной из гетинакса или текстолита. Крышка камеры размером 170 х 170 мм сделана из того же материала, что и дно. Посередине крышки делается окно 70x70 мм, через которое производится наблюдение. Это окно закрывается стеклом (6), которое через резиновую

кладку прижимается к крышке винтами. С помощью текстолитовой рамы (7) и стержней (8) стенки камеры прижимаются ко дну и к крышке. Внутри камеры к крышке прикрепляется корытце (9), сделанное из тонкой меди или жести. В стенке камеры и в крышке нужно просверлить небольшие отверстия для ввода в камеру радиоактивного излучения. Отверстия закрываются пробками «а».

Как работает камера?

Из физики известно, что давление насыщенных паров жидкости уменьшается с понижением температуры. Если температуру насыщенных паров понизить, они перейдут в пересыщенное состояние. Когда в пересыщенных парах находятся мелкие пылинки, то на них будет конденсироваться пар, и на пылинках вырастут капельки видимого размера. При значительном пересыщении паров центрами конденсации могут быть не только такие крупные «частички», как пылинки, но даже ионы газов, а каждая о-частица на своем пути ионизирует до 100 тыс. атомов. След л частицы становится видимым, - он отмечен мгновенно возникающей нитью тумана.

Рабочей жидкостью в данной камере может служить метиловый или этиловый спирт (метиловый спирт - только для стеклянной камеры: плексиглас не годится). Пересыщение достигается за счет непрерывной диффузии пара в вертикальном направлении от нагретой крышки к охлажденному дну. Чтобы получить следы частиц хорошего качества, дно камеры должно быть охлаждено до - 50^- 80° С, а крышка должна находиться при обычной комнатной температуре.

Охлаждение дна камеры производится твердой углекислотой («сухим льдом»), которая в количестве 2 -3 кг загружается в деревянный ящик (10). Твердая углекислота поджимается ко дну пружинами (11). к -г- 3 кг «сухого льда» хватает примерно на два часа работы.

Для запуска камеры пружины сжимаются и фиксируются стержнями (12). В ящик засыпаются кусочки твердой углекислоты. Затем дно ставится в обойме и привинчивается к ящику с помощью четырех коротких стержней (13) и гаек (14) по углам. На дно кладется бархат, прокладка и ставятся стенки, на стенки - крышка. Вся эта система стягивается рамой и четырьмя длинными стержнями. Через отверстие для наблюдения в крышке в камеру заливается спирт, чтобы на дне оказался слой его высотой 2 -т- 3 мм. При заливке надо следить, чтобы камера стояла горизонтально и уровень спирта на дне был бы везде одинаков. В корытце (9) спирт заливается через отверстие «а» в крышке (3) камеры.

Фиксирующие стержни одновременно вынимаются, и с"ухой лед" поджимается пружинами ко дну. После этого примерно через 20 мин. около дна камеры можно наблюдать следы частиц. Высота слоя, в котором видны следы частиц (чувствительного слоя), в данной камере составляет примерно 20 мм. Освещение чувствительного слоя производится сбоку. Для этой цели может быть использован осветитель с лампой накаливания мощностью 100 ~ 300 вт и дающий более или менее параллельный пучок света (эпидиаскоп, например).

Боковые стенки камеры в процессе работы обмерзают. Поэтому стенку камеры, через которую производится освещение, следует время от времени протирать тряпочкой, смоченной в спирте. Перед сборкой камеры внутренние поверхности стенок, дна и крышки, а также и корытце должны быть промыты спиртом. Наблюдение надо вести в темной комнате.

В качестве источника a - частиц могут быть использованы часы со светящимся циферблатом, которые подносятся вплотную к камере. Можно радиоактивное вещество нанести на кончик проволоки и ввести его в чувствительный слой. Однако источник частиц не должен находиться длительное время в чувствительном слое, так как на нем конденсируются пары спирта и вылет частиц прекращается.

Конструкция камеры не обязательно должна быть прямоугольной. Если найдется круглая стеклянная байка подходящего диаметра, можно использовать и ее.

Атомным прибором огромной важности явилась ионизационная камера, сконструированная английским физиком . Это знаменитое изобретение принесло Вильсону Нобелевскую премию 1937 г., а созданная им камера Вильсона навсегда увековечила имя своего создателя. Камера возникла из наблюдения, сделанного в 1897 г., заключающегося в том, что ионы являются центрами конденсации водяных паров. Основываясь на этом наблюдении, Г. А. Вильсон предложил метод определения заряда электрона, из которого, как мы видели, развились методы Милликена. Статья Чарлза Томаса Риса Вильсона , описывающая это наблюдение, называлась "Конденсация водяного пара в присутствии обеспыленного воздуха и других газов". В истории лаборатории Кавендиша, вышедшей в 1910 г., Д. Д. Томсон , бывший в это время руководителем лаборатории, писал об открытии Вильсона: "Мы должны теперь рассмотреть замечательную серию исследований Ч. Т. Р. Вильсона об условиях конденсации воды в обеспыленных газах, насыщенных водяным паром. Эти исследования не только значительно увеличили наши знания по исследуемой проблеме, но и открыли новый и поразительный метод исследования свойств ионизационного газа".

Томсон был прав, назвав новый метод "поразительным", однако вряд ли он в то время, когда писал эти строки, представлял себе все могущество этого метода. В работах 1897 г. Вильсон показал, что центрами конденсации в обеспыленном воздухе являются ионы, производимые рентгеновскими или беккерелевыми лучами. При этом для образования капель на отрицательных ионах требовалось внезапное расширение до 1,252 первоначального объема, для образования же капель на положительных ионах требовалось расширение до 1,375 первоначального объема. Через год-два после того, как Томсон написал выше процитированные строки, Вильсон сделал сообщение (1911), в котором описал "метод обнаружения путей ионизирующих частиц во влажных газах, основанный на конденсации пара на ионах, непосредственно после образования этих ионов".

Первые результаты не удовлетворили Вильсона и в 1912 г. он окончательно нашел конструкцию прибора, получившего позже название камеры Вильсона.

Приведем первые вильсоновские фотографии с его пояснениями.

"Эти рисунки представляют собою снимки с фотографий облачков, конденсировавшихся на ионах, которые освобождаются при прохождении лучей разного рода сквозь влажный газ. В последующем 1 обозначает плотность воздуха перед расширением (по отношению к насыщенному водяным паром воздуху при 15° С и 760 мм рт. ст. ), 2 - плотность после расширения, v 2 / v 1 - величину расширения, V - разность потенциалов между крышкой и дном ионизационной камеры в вольтах, М - увеличение фотографического аппарата. Во всех случаях крышка камеры была положительна, так что отрицательные ионы двигались вверх, положительные же - вниз.

Ионизация α-лучами.

Ось фотографической камеры вертикальна; горизонтальный слой глубиной в 2 см освещается ртутной искрой.

Рис. 1 (табл. I). α-лучи радия. Одни из α-частиц прошли сквозь воздух до расширения, другие - после него.

1 = 0,98, v 2 / v 1 = 1,36, 2 = 0,72, V = 40 в, М = 1 / 2,18 .

Рис. 2 (табл. I). α-лучи радия. Все α-частицы прошли сквозь воздух после расширения.

1 = 0,97, v 2 / v 1 = 1,33, 2 = 0,73, V = 40 в, М = 1,05.

Рис. 3 (табл. I). α-лучи радия. Увеличение части рис. 2.

1 = 0,97, v 2 / v 1 = 1,33, 2 = 0,73, V = 40 в, М = 2,57.

Рис. 4 (табл. I). α-лучи радиевой эманации и активного осадка.

1 = 1,00, v 2 / v 1 = 1,36, 2 = 0,74, V = 40 в, М = 1 / 124 .

Рис. 5 (табл. I). Полный путь α-частицы, выброшенной радиевой эманацией.

Камера Вильсона - трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения.

Принцип работы первой камеры Вильсона. На нитке 1 подвешены шарики 2 и 3. Нитку пережигали, одновременно открывая вентиль 4. Шарики, падая, замыкали последовательно контакты 5 и 6, подключенные к источникам высокого напряжения - батареям лейденских банок. Включалась рентгеновская трубка 7, ионизирующая своим излучением газ в камере, и спустя сотые доли секунды в разряднике 8 возникала искра, освещающая треки. Их снимал фотоаппарат 9. Так без малого сто лет назад начались исследования микромира.

Действие камеры Вильсона основано на явлении конденсации пересыщенного пара, т.e. на образовании мелких капелек жидкости на каких-либо центрах конденсации, например на ионах, образующихся вдоль следа быстрой заряженной частицы. Капли жидкости вырастают до размеров достаточных для наблюдения (10-3 -10-4 см) и фотографирования при хорошем освещении.

Пространственное разрешение камеры Вильсона обычно 0.3 мм.

Рис. 3.

Для исследования частиц с малой энергией камеры заполняют газом при давлении меньше атмосферного. Для исследования частиц высоких энергий камеру наполняют газом до давлений в десятки атм. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта - на положительных ионах). Широко варьируются размеры и форма камер, материалы их стенок.

Камера Вильсона сыграла важную роль в изучении строения вещества. На протяжении нескольких десятилетий этот детектор был практически единственным визуальным методом регистрации ядерных излучений. Однако в последние годы камера Вильсона уступила место пузырьковым и искровым камерам.

Д.В. Скобельцын усовершенствовал камеру Вильсона, поместив её в мощное магнитное поле, параллельно оси камеры. По искривлению траектории можно судить о знаке заряда, а если известны заряд и масса частицы, то по радиусу кривизны траектории можно определить скорость и энергию частицы. Если температура жидкости выше температуры кипения при данном давлении, а жидкость не вскипает, то такую жидкость называют перегретой. Это состояние не стабильно, оно разрушается, если создать в жидкости центры парообразования. Идея создания пузырьковой камеры принадлежит английскому ученому Глезеру (1952 год). Если через камеру, содержащую перегретую жидкость, пролетает частица большой энергии, то на ионах, образовавшихся на пути этой частицы, возникают пузырьки пара и дают след траектории частицы, который можно сфотографировать.

Рис. 4.

Быстрые заряженные частицы производят на зерна фотоэмульсии такое же воздействие, как и кванты света. Так как плотность вещества эмульсии во много раз превышает плотность воздуха, то след, оставленный быстрой частицей в эмульсии в тысячи раз короче, чем в воздухе. Поэтому для исследования частиц очень большой энергии применяются стопки, состоящие из листков эмульсии. Метод толстослойных фотоэмульсий был предложен советскими учеными Мысовским и Ждановым.

Для исследования распределения заряженных частиц по скоростям используются черенковские счетчики, основанные регистрации излучения Вавилова-Черенкова, возникающего при движении в среде заряженной частицы, имеющей скорость, большую скорости света в данной среде.

Биологические методы регистрации излучений.

Для регистрации ионизирующих излучений используют также биологические методы. Величину дозы оценивают по уровню летальности живых организмов, степени лейкомии, количеству хромосомных аберраций, изменению окраски и гиперемии кожи, выпадению волос, появлению в выделениях дезоксицитидина и др. Биологические методы не очень точны и менее чувствительны по сравнению с физическими методами. Однако они незаменимы в случае определения относительной биологической эффективности тяжелых частиц с большой энергией, а также при учете индивидуальных различий радиочувствительности.

Расчетные методы регистрации излучений.

В расчетных методах дозу излучения определяют путем математических вычислений. Это единственно возможный метод для определения дозы от инкорпорированных радионуклидов. Математический метод широко применяют для определения поглощенной и интегральной доз, исходя из экспозиционной и терапевтической доз от закрытых радиоактивных препаратов.

Дозиметрические приборы позволяют определять экспозиционную или поглощенную дозы излучения или мощность доз. Они предназначены для оценки радиационной обстановки в жилых, рабочих помещениях и на местности. Эти приборы просты в эксплуатации. К такому типу приборов относятся сигнализаторы-индикаторы, позволяющие выявить и оценивать мощность гамма-излучений с помощью световой и звуковой индикации. Измерители-индикаторы позволяют выявить радиоактивное загрязнение и одновременно измерять мощность гамма излучения. В общем случае оценку мощности гамма-излучения проводят на высоте 1 метр от поверхности земли и в 30 метрах от строений. Если снять заднюю крышку дозиметра можно измерить плотность потока бета-излучения, пользуясь пересчетной формулой, указанной в техническом описании прибора.

При своей простоте дозиметры позволяют определять уровень загрязнения лишь качественно.

Например, если дозиметр показывает 10 мкР/ч (0,1 мкЗв/ч) на расстоянии 5 см от одного килограмма продукта, это соответствует удельной активности 3500 Бк/кг, что свидетельствует об очень высоком уровне радиоактивного загрязнения.

Для более точных измерений применяют радиометры. Исследуемые пробы (продукты, почва, вода) помещают в отдельный сосуд, который изолирован от внешнего излучения, что позволяет зафиксировать даже незначительную величину излучения. Одним из наиболее удобных радиометров является Беккерель-монитор "Berthold", который позволяет определить загрязненность продуктов питания с точностью до 2 %.

К наиболее распространенным отечественным приборам радиационного контроля, которыми пользуется население, относятся:

Дозиметр "Сосна" - позволяет определить мощность экспозиционной дозы гамма-излучения и плотность потока бета-излучения. Имеет звуковую сигнализацию. Схожие характеристики имеет дозиметр "Белла".

Дозиметр-радиометр "Припять" измеряет степень радиоактивного загрязнения поверхностей продуктов.

Дозиметр-радиометр РКСБ-104 также измеряет уровень радиации и загрязненность объектов радионуклидами.

Существуют и другие приборы с подобными функциями.

ионизирующий детектор гейгер пузырьковый

Табл. 1. Единицы дозиметрии