Волновая функция и ее физический смысл. Волновая функция и ее статистический смысл. Виды волновой функции и ее коллапс

Для описания корпускулярно-волновых свойств электрона в квантовой механике используют волновую функцию, которая обозначается греческой буквой пси (Т). Главные свойства волновой функции таковы:

  • в любой точке пространства с координатами х, у, z она имеет определенные знак и амплитуду: ЧДд:, у , г);
  • квадрат модуля волновой функции | ЧДх, y,z) | 2 равен вероятности нахождения частицы в единице объема, т.е. плотности вероятности.

Плотность вероятности обнаружения электрона на различных расстояниях от ядра атома изображают несколькими способами. Часто ее характеризуют числом точек в единице объема (рис. 9.1, а). Точечное изображение плотности вероятности напоминает облако. Говоря об электронном облаке, следует иметь в виду, что электрон - это частица, проявляющая одновременно и корпускулярные, и волновые

Рис. 9.1.

свойства. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность его обнаружения велика или даже максимальна.

На рис. 9.1, а штриховой линией обозначена сферическая поверхность, внутри которой вероятность обнаружения электрона составляет 90%. На рис. 9.1, б приведено контурное изображение электронной плотности в атоме водорода. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона 10%, вероятность же обнаружения электрона внутри второго от ядра контура составляет 20%, внутри третьего - 30% и т.д. На рис. 9.1, в электронное облако изображено в виде сферической поверхности, внутри которой вероятность обнаружения электрона составляет 90%.

Наконец, на рис. 9.1, г и б двумя способами показана вероятность обнаружения электрона Is на разных расстояниях г от ядра: вверху показан «разрез» этой вероятности, проходящий через ядро, а внизу - сама функция 4лг 2 |У| 2 .

Уравнение Шрёдингсра. Это фундаментальное уравнение квантовой механики было сформулировано австрийским физиком Э. Шрёдингером в 1926 г. Оно связывает полную энергию частицы Е, равную сумме потенциальной и кинетической энергий, потенциальную энергию?„, массу частицы т и волновую функцию 4*. Для одной частицы, например электрона массой т е, оно имеет следующий вид :

С математической точки зрения это уравнение с тремя неизвестными: У, Е и?„. Решить его, т.е. найти эти неизвестные, можно, если решать его совместно с двумя другими уравнениями (для нахождения трех неизвестных требуется три уравнения). В качестве таких уравнений используют уравнения для потенциальной энергии и граничных условий.

Уравнение потенциальной энергии не содержит волно- вую функцию У. Оно описывает взаимодействие заряженных частиц по закону Кулона. При взаимодействии одного электрона с ядром, имеющим заряд +z, потенциальная энергия равна

где г = У* 2 + у 2 + z 2 .

Это случай так называемого одноэлектронного атома. В более сложных системах, когда заряженных частиц много, уравнение потенциальной энергии состоит из суммы таких же кулоновских членов.

Уравнением граничных условий является выражение

Оно означает, что волновая функция электрона стремится к нулю на больших расстояниях от ядра атома.

Решение уравнения Шрёдингера позволяет найти волновую функцию электрона? = (х, у , z) как функцию координат. Это распределение называется орбиталью.

Орбиталь - это заданная в пространстве волновая функция.

Система уравнений, включающая уравнения Шрёдингера, потенциальной энергии и граничных условий, имеет не одно, а много решений. Каждое из решений одновременно включает 4 х = (х, у , г) и Е , т.е. описывает электронное облако и соответствующую ему полную энергию. Каждое из решений определяется квантовыми числами.

Физический смысл квантовых чисел можно понять, рассмотрев колебания струны, в результате которых образуется стоячая волна (рис. 9.2).

Длина стоячей волны X и длина струны b связаны уравнением

Длина стоячей волны может иметь лишь строго определенные значения, отвечающие числу п, которое принимает только целочисленные неотрицательные значения 1,2,3 и т.д. Как очевидно из рис. 9.2, число максимумов амплитуды колебаний, т.е. форма стоячей волны, однозначно определяется значением п.

Поскольку электронная волна в атоме представляет собой более сложный процесс, чем стоячая волна струны, значения волновой функции электрона определяются не одним, а че-


Рис. 9.2.

тырьмя числами, которые называются квантовыми числами и обозначаются буквами п, /, т и s. Данному набору квантовых чисел п, /, т одновременно отвечают определенная волновая функция Ч"лДл, и полная энергия E„j. Квантовое число т при Е не указывают, так как в отсутствие внешнего поля энергия электрона от т не зависит. Квантовое число s не влияет ни на 4* п хт, ни на E n j.

  • , ~ elxv dlxv 62*p
  • Символы --, --- означают вторые частные производные от fir1 дуг 8z2 Ч"-функции. Это производные от первых производных. Смысл первой производной совпадает с тангенсом угла наклона функции Ч" от аргумента х, уили z на графиках? = j(x), Т =/2(у), Ч" =/:!(z).

Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону (т.е. е - iωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн (немецкий физик) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или -функцией (пси - функцией).

Волновая функция - функция координат и времени.

Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ * - функция комплексно сопряженная с Ψ

(z = a +ib, z * =a- ib, z * - комплексно сопряженное)

Если частица находится в конечном объеме V, то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

Р = 1 

В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,

Условие нормировки

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

 - функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

    непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),

    Волновая функция удовлетворяет принципу суперпозиции : если система может находится в различных состояниях, описываемых волновыми функциями  1 , 2 ... n , то она может находится в состоянии , описываемой линейной комбинаций этих функций:

С n (n=1,2...) - любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

§5 Уравнение Шредингера

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

(1)

Временное уравнение Шредингера.

Набла - оператор Лапласа

Потенциальная функция частицы в силовом поле,

Ψ(y,z,t) - искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:

(2)

Е - полная энергия частицы, постоянная в случае стационарного поля.

Подставив (2)  (1):

(3)

Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

Граничные условия:

волновые функции должны быть регулярными , т.е.

1)конечными;

2) однозначными;

3) непрерывными.

Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр - дискретный , если непрерывные - сплошной или непрерывный .

корпускулярно -- волновым дуализмом в квантовой физике состояние частицы описывается при помощи волновой функции ($\psi (\overrightarrow{r},t)$- пси-функция).

Определение 1

Волновая функция -- это функция, которая используется в квантовой механике. Она описывает состояние системы, которая имеет размеры в пространстве. Она является вектором состояния.

Данная функция является комплексной и формально имеет волновые свойства. Движение любой частицы микромира определено вероятностными законами. Распределение вероятности выявляется при проведении большого числа наблюдений (измерений) или большого количества частиц. Полученное распределение аналогично распределению интенсивности волны. То есть в местах с максимальной интенсивностью отмечено максимальное количество частиц.

Набор аргументов волновой функции определяет ее представление. Так, возможно координатное представление: $\psi(\overrightarrow{r},t)$, импульсное представление: $\psi"(\overrightarrow{p},t)$ и т.д.

В квантовой физике целью ставится не точность предсказания события, а оценка вероятности того или иного события. Зная величину вероятности, находят средние значения физических величин. Волновая функция позволяет находить подобные вероятности.

Так вероятность присутствия микрочастицы в объеме dV в момент времени t может быть определена как:

где $\psi^*$- комплексно сопряженная функция к функции $\psi.$ Плотность вероятности (вероятность в единице объёма) равна:

Вероятность является величиной, которую можно наблюдать в эксперименте. В это же время волновая функция не доступна для наблюдения, так как она является комплексной (в классической физике параметры, которые характеризуют состояние частицы, доступны для наблюдения).

Условие нормировки $\psi$- функции

Волновая функция определена с точностью до произвольного постоянного множителя. Данный факт не оказывает влияния на состояние частицы, которую $\psi$- функция описывает. Однако волновую функцию выбирают таким образом, что она удовлетворяет условию нормировки:

где интеграл берут по всему пространству или по области, в которой волновая функция не равна нулю. Условие нормировки (2) значит то, что во всей области, где $\psi\ne 0$ частица достоверно присутствует. Волновую функцию, которая подчинятся условию нормировки, называют нормированной. Если ${\left|\psi\right|}^2=0$, то данное условие означает, что частицы в исследуемой области наверняка нет.

Нормировка вида (2) возможна при дискретном спектре собственных значений.

Условие нормировки может оказаться не осуществимым. Так, если $\psi$ -- функция является плоской волной де-Бройля и вероятность нахождения частицы является одинаковой для всех точек пространства. Данные случаи рассматривают как идеальную модель, в которой частица присутствует в большой, но имеющей ограничения области пространства.

Принцип суперпозиции волновой функции

Данный принцип является одним их основных постулатов квантовой теории. Его смысл в следующем: если для некоторой системы возможны состояния, описываемые волновыми функциями $\psi_1\ {\rm и}\ $ $\psi_2$, то для этой системы существует состояние:

где $C_{1\ }и\ C_2$ -- постоянные коэффициенты. Принцип суперпозиции подтверждается эмпирически.

Можно говорить о сложении любого количества квантовых состояний:

где ${\left|C_n\right|}^2$ -- вероятность того, что система обнаруживается в состоянии, которое описывается волновой функцией $\psi_n.$ Для волновых функций, подчиненных условию нормировки (2) выполняется условие:

Стационарные состояния

В квантовой теории особую роль имеют стационарные состояния (состояния в которых все наблюдаемые физические параметры не изменяются во времени). (Сама волновая функция принципиально не наблюдаема). В стационарном состоянии $\psi$- функция имеет вид:

где $\omega =\frac{E}{\hbar }$, $\psi\left(\overrightarrow{r}\right)$ не зависит от времени, $E$- энергия частицы. При виде (3) волновой функции плотность вероятности ($P$) является постоянной времени:

Из физических свойств стационарных состояний следуют математические требования к волновой функции $\psi\left(\overrightarrow{r}\right)\to \ (\psi(x,y,z))$.

Математические требования к волновой функции для стационарных состояний

$\psi\left(\overrightarrow{r}\right)$- функция должна быть во всех точках:

  • непрерывна,
  • однозначна,
  • конечна.

Если потенциальная энергия имеет поверхность разрыва, то на подобных поверхностях функция $\psi\left(\overrightarrow{r}\right)$ и ее первая производная должны оставаться непрерывными. В области пространства, где потенциальная энергия становится бесконечной, $\psi\left(\overrightarrow{r}\right)$ должна быть равна нулю. Непрерывность функции $\psi\left(\overrightarrow{r}\right)$ требует, чтобы на любой границе этой области $\psi\left(\overrightarrow{r}\right)=0$. Условие непрерывности накладывается на частные производные от волновой функции ($\frac{\partial \psi}{\partial x},\ \frac{\partial \psi}{\partial y},\frac{\partial \psi}{\partial z}$).

Пример 1

Задание: Для некоторой частицы задана волновая функция вида: $\psi=\frac{A}{r}e^{-{r}/{a}}$, где $r$ -- расстояние от частицы до центра силы (рис.1), $a=const$. Примените условие нормировки, найдите нормировочный коэффициент A.

Рисунок 1.

Решение:

Запишем условие нормировки для нашего случая в виде:

\[\int{{\left|\psi\right|}^2dV=\int{\psi\psi^*dV=1\left(1.1\right),}}\]

где $dV=4\pi r^2dr$ (см.рис.1 Из условий понятно, что задача обладает сферической симметрией). Из условий задачи имеем:

\[\psi=\frac{A}{r}e^{-{r}/{a}}\to \psi^*=\frac{A}{r}e^{-{r}/{a}}\left(1.2\right).\]

Подставим $dV$ и волновые функции (1.2) в условие нормировки:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=1\left(1.3\right).}\]

Проведем интегрирование в левой части:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=2\pi A^2a=1\left(1.4\right).}\]

Из формулы (1.4) выразим искомый коэффициент:

Ответ: $A=\sqrt{\frac{1}{2\pi a}}.$

Пример 2

Задание: Каково наиболее вероятное расстояние ($r_B$) электрона от ядра, если волновая функция, которая описывает основное состояние электрона в атоме водорода может быть определена как: $\psi=Ae^{-{r}/{a}}$, где $r$- расстояние от электрона до ядра, $a$ -- первый Боровский радиус?

Решение:

Используем формулу, которая определяет вероятность присутствия микрочастицы в объеме $dV$ в момент времени $t$:

где $dV=4\pi r^2dr.\ $Следователно, имеем:

В таком случае, $p=\frac{dP}{dr}$ запишем как:

Для определения наиболее вероятного расстояния производную $\frac{dp}{dr}$ приравняетм к нулю:

\[{\left.\frac{dp}{dr}\right|}_{r=r_B}=8\pi rA^2e^{-{2r}/{a}}+4\pi r^2A^2e^{-{2r}/{a}}\left(-\frac{2}{a}\right)=8\pi rA^2e^{-{2r}/{a}}\left(1-\frac{r}{a}\right)=0(2.4)\]

Так как решение $8\pi rA^2e^{-{2r_B}/{a}}=0\ \ {\rm при}\ \ r_B\to \infty $, нам не подходит, то отсается:

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения таких частиц. Теория, охватывающая все свойства элементарных частиц, должна учитывать не только их корпускулярные свойства, но и волновые. Из опытов, рассмотренных ранее, следует, что пучок элементарных частиц обладает свойствами плоской волны, распространяющейся в направлении скорости частиц. В случае распространения вдоль оси этот волновой процесс может быть описан уравнением волны де Бройля (7.43.5):

(7.44.1)

где – энергия, – импульс частицы. При распространении в произвольном направлении :

(7.44.2)

Назовем функцию волновой функцией и выясним ее физический смысл путём сравнения дифракции световых волн и микрочастиц.

Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задаётся квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Интенсивность же больше там, где больше число частиц. Таким образом, дифракционная картина для микрочастиц является проявлением статистической закономерности и можно говорить, что знание вида волны де Бройля, т.е. Ψ -функции, позволяет судить о вероятности того или иного из возможных процессов.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объёмом равна

(7.44.3)

Величина

(7.44.4)

имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объёме в окрестности заданной точки. Таким образом, физический смысл имеет не сама - функция, а квадрат её модуля , которым задаётся интенсивность волн де Бройля. Вероятность найти частицу в момент времени в конечном объёме , согласно теореме сложения вероятностей, равна

(7.44.5)

Так как частица существует, то она обязательно где-то обнаруживается в пространстве. Вероятность достоверного события равна единице, тогда


. (7.44.6)

Выражение (7.44.6) называется условием нормировки вероятности. Волновая функция , характеризующая вероятность обнаружения действия микрочастицы в элементе объёма, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

3. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ

3.1.Волновая функция

Всякая микрочастица – это образование особого рода, сочетающее в себе свойства и частицы, и волны. Отличие микрочастицы от волны состоит в том, что она обнаруживается как неделимое целое. Например, никто не наблюдал полэлектрона. В тоже время волну можно разделить на части и затем воспринимать каждую часть в отдельности.

Отличие микрочастицы в квантовой механике от обычной микрочастицы заключается в том, что она не обладает одновременно определенными значениями координат и импульса, поэтому понятие траектории для микрочастицы утрачивает смысл.

Распределение вероятности нахождения частицы в данный момент времени в некоторой области пространства будем описывать волновой функцией (x , y , z , t ) (пси-функция). Вероятность dP того, что частица находится в элементе объема dV , пропорциональная
и элементу объемуdV :

dP =
dV .

Физический смысл имеет не сама функция
, а квадрат ее модуля – это плотность вероятности. Она определяет вероятность пребывания частицы в данной точке пространства.

Волновая функция
является основной характеристикой состояния микрообъектов (микрочастиц). С ее помощью в квантовой механике могут быть вычислены средние значения физических величин, которые характеризуют данный объект, находящийся в состоянии, описываемом волновой функцией
.

3.2. Принцип неопределенности

В классической механике состояние частицы задают координатами, импульсом, энергией и т.п. Это динамические переменные. Микрочастицу описывать такими динамическими переменными нельзя. Особенность микрочастиц состоит в том, что не для всех переменных получаются при измерениях определенные значения. Например, частица не может иметь одновременно точных значений координаты х и компоненты импульсар х . Неопределенность значенийх ир х удовлетворяет соотношению:

(3.1)

– чем меньше неопределенность координаты Δх , тем больше неопределенность импульса Δр х , и наоборот.

Соотношение (3.1) называется соотношением неопределенности Гейзенберга и было получено в 1927 г.

Величины Δх и Δр х называются канонически сопряженными. Такими же канонически сопряженными являются Δу и Δр у , и т.п.

Принцип неопределенности Гейзенберга гласит: произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка ħ.

Энергия и время тоже являются канонически сопряженными, поэтому
. Это означает, что определение энергии с точностью ΔЕ должно занять интервал времени:

Δt ~ ħ/ ΔЕ .

Определим значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Δх , расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель ее составляющая импульсар х имеет точное значение,р х = 0 (щель перпендикулярна к вектору импульса), поэтому неопределенность импульса равна нулю, Δр х = 0, зато координатах частицы является совершенно неопределенной (рис.3.1).

Вмомент прохождения частицы через щель положение меняется. Вместо полной неопределенности координатых появляется неопределенность Δх , и появляется неопределенность импульса Δр х .

Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла 2φ , гдеφ – угол, соответствующий первому дифракционному минимуму (максимумами высших порядков пренебрегаем, т.к. их интенсивность мала по сравнению с интенсивностью центрального максимума).

Таким образом, появляется неопределенность:

Δр х =р sinφ ,

но sinφ = λ / Δх – это условие первого минимума. Тогда

Δр х ~рλ/ Δх ,

Δх Δр х ~рλ = 2πħ ħ/ 2.

Соотношение неопределенностей указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Движение по траектории характеризуется определенными значениями скорости частицы и ее координат в каждый момент времени. Подставив в соотношение неопределенностей вместо р х выражение для импульса
, имеем:

чем больше масса частицы, тем меньше неопределенности ее координаты и скорости, тем с большей точностью применимы к ней понятия траектории.

Например, для микрочастицы размером 1·10 -6 м неопределенности Δх и Δ выходят за пределы точности измерения этих величин, и движение частицы неотделимо от движения по траектории.

Соотношение неопределенностей является фундаментальным положением квантовой механики. Оно, например, позволяет объяснить тот факт, что электрон не падает на ядро атома. Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона Δr и неопределенность импульса Δр удовлетворяли соотношению

Δr Δp ħ/ 2,

и значение r = 0 невозможно.

Энергия электрона в атоме будет минимальна при r = 0 и р = 0, поэтому для оценки наименьшей возможной энергии положим Δr r , Δp p . Тогда Δr Δp ħ/ 2, и для наименьшего значения неопределенности имеем:

нас интересует только порядок величин, входящих в это соотношение, поэтому множитель можно отбросить. В этом случае имеем
, отсюдар = ħ/ r . Энергия электрона в атоме водорода

(3.2)

Найдем r , при котором энергия Е минимальна. Продифференцируем (3.2) и приравняем производную к нулю:

,

численные множители в этом выражении мы отбросили. Отсюда
- радиус атома (радиус первой боровской орбиты). Для энергии имеем

Можно подумать, что с помощью микроскопа удастся определить положение частицы и тем самым ниспровергнуть принцип неопределенности. Однако микроскоп позволит определить положение частицы в лучшем случае с точностью до длины волны используемого света, т.е. Δх ≈ λ , но т.к. Δр = 0, то Δр Δх = 0 и принцип неопределенности не выполняется?! Так ли это?

Мы пользуемся светом, а свет, согласно квантовой теории, состоит из фотонов с импульсом р = k . Чтобы обнаружить частицу, на ней должен рассеяться или поглотиться хотя бы один из фотонов пучка света. Следовательно, частице будет передан импульс, по крайней мере достигающей h . Таким образом, в момент наблюдения частицы с неопределенностью координаты Δх ≈ λ неопределенность импульса должна быть Δр ≥ h .

Перемножая эти неопределенности, получаем:

принцип неопределенности выполняется.

Процесс взаимодействия прибора с изучаемым объектом называется измерением. Этот процесс протекает в пространстве и во времени. Существует важное различие между взаимодействием прибора с макро- и микрообъектами. Взаимодействие прибора с макрообъектом есть взаимодействие двух макрообъектов, которое достаточно точно описывается законами классической физики. При этом можно считать, что прибор не оказывает на измеряемый объект влияния, либо это влияние мало. При взаимодействии прибора с микрообъектами возникает иная ситуация. Процесс фиксации определенного положения микрочастицы вносит в ее импульс изменение, которое нельзя сделать равным нулю:

Δр х ≥ ħ/ Δх.

Поэтому воздействие прибора на микрочастицу нельзя считать малым и несущественным, прибор изменяет состояние микрообъекта – в результате измерения определенные классические характеристики частицы (импульс и др.) оказываются заданными лишь в рамках, ограниченных соотношением неопределенностей.

3.3.Уравнение Шредингера

В 1926 г. Шредингер получил свое знаменитое уравнение. Это основное уравнение квантовой механики, основное предположение, на котором основана вся квантовая механика. Все вытекающие из этого уравнения следствия согласуются с опытом – в этом его подтверждение.

Вероятностное (статистическое) истолкование волн де Бройля и соотношение неопределенностей указывают, что уравнение движения в квантовой механике должно быть таким, чтобы оно позволило объяснить наблюдаемые на опыте волновые свойства частиц. Положение частицы в пространстве в данный момент времени определяется в квантовой механике заданием волновой функции
(x , y , z , t ), а точнее квадратом модуля этой величины.
– это вероятность нахождения частицы в точкеx , y , z в момент времени t . Основное уравнение квантовой механики должно быть уравнением относительно функции
(x , y , z , t ). Далее, это уравнение должно быть волновым, из него должны получить свое объяснение эксперименты по дифракции микрочастиц, подтверждающие их волновую природу.

Уравнение Шредингера имеет следующий вид:

. (3.3)

где m – масса частицы, i – мнимая единица,
– оператор Лапласа,
,U – оператор потенциальной энергии частицы.

Вид Ψ-функции определяется функцией U , т.е. характером сил, действующих на частицу. Если силовое поле стационарно, то решение уравнения имеет вид:

, (3.4)

где Е – полная энергия частицы, она остается постоянной при каждого состояния, Е= const .

Уравнение (3.4) называется уравнением Шредингера для стационарных состояний. Его еще можно записать в виде:

.

Это уравнение применимо к нерелятивистским системам при условии, что распределение вероятностей не меняется во времени, т.е. когда функции ψ имеют вид стоячих волн.

Уравнение Шредингера можно получить следующим образом.

Рассмотрим одномерный случай – свободно движущуюся частицу по оси х . Ей соответствует плоская волна де Бройля:

,

но
, поэтому
. Продифференцируем это выражение поt :

.

Найдем теперь вторую производную от пси-функции по координате

,

В нерелятивистской классической механике энергия и импульс связаны соотношением:
где Е – кинетическая энергия. Частица движется свободно, ее потенциальная энергия U = 0, и полная Е=Е k . Поэтому

,

– это уравнение Шредингера для свободной частицы.

Если частица движется в силовом поле, то Е – вся энергия (и кинетическая, и потенциальная), поэтому:

,

тогда получим
, или
,

и окончательно

Это уравнение Шредингера.

Приведенные рассуждения – не вывод уравнения Шредингера, а пример того, как это уравнение можно установить. Само же уравнение Шредингера постулируется.

В выражении

левая часть обозначает оператор Гамильтона– гамильтониан – это сумма операторов
иU . Гамильтониан – это оператор энергии. Подробно об операторах физических величин будем говорить в дальнейшем. (Оператор выражает некоторое действие под функцией ψ , которая стоит под знаком оператора). С учетом сказанного имеем:

.

Физический смысл имеет не сама ψ -функция, а квадрат ее модуля, определяющий плотность вероятности нахождения частицы в данном месте пространства. Квантовая механика имеет статистический смысл. Она не позволяет определить местонахождение частицы в пространстве или траекторию, по которой движется частица. Пси-функция лишь дает вероятность, с какой частица может быть обнаружена в данной точке пространства. В связи с этим пси-функция должна удовлетворять следующим условиям:

Она должна быть однозначной, непрерывной и конечной, т.к. определяет состояние частицы;

Она должна иметь непрерывную и конечную производную;

Функция Iψ I 2 должна быть интегрируема, т.е. интеграл

должен быть конечным, так как он определяет вероятность обнаружения частицы.

Интеграл

,

Это условие нормировки. Оно означает, что вероятность того, что частица находится в какой-нибудь из точек пространства, равна единице.