Условный экстремум функционала. Экстремум функции нескольких переменных Понятие экстремума функции нескольких переменных. Необходимые и достаточные условия экстремума Условный экстремум Наибольшее и наименьшее значения непрерывных функций

Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.

Лекция 5.

Определение 5.1. Точка М 0 (х 0 , у 0) называется точкой максимума функции z = f (x, y), если f (x o , y o) > f (x, y) для всех точек (х, у) М 0 .

Определение 5.2. Точка М 0 (х 0 , у 0) называется точкой минимума функции z = f (x, y), если f (x o , y o) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М 0 .

Замечание 1. Точки максимума и минимума называются точками экстремума функции нескольких переменных.

Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.

Теорема 5.1 (необходимые условия экстремума). Если М 0 (х 0 , у 0) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.

Доказательство.

Зафиксируем значение переменной у , считая у = у 0 . Тогда функция f (x, y 0) будет функцией одной переменной х , для которой х = х 0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .

Определение 5.3. Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.

Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.

Теорема 5.2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М 0 (х 0 , у 0) , являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:

1) f (x, y) имеет в точке М 0 максимум, если AC – B ² > 0, A < 0;

2) f (x, y) имеет в точке М 0 минимум, если AC – B ² > 0, A > 0;

3) экстремум в критической точке отсутствует, если AC – B ² < 0;



4) если AC – B ² = 0, необходимо дополнительное исследование.

Доказательство.

Напишем формулу Тейлора второго порядка для функции f (x, y), помня о том, что в стационарной точке частные производные первого порядка равны нулю:

где Если угол между отрезком М 0 М , где М (х 0 + Δх, у 0 + Δу ), и осью Ох обозначить φ, то Δх = Δρ cosφ, Δy = Δρsinφ. При этом формула Тейлора примет вид: . Пусть Тогда можно разделить и умножить выражение в скобках на А . Получим:

Рассмотрим теперь четыре возможных случая:

1) AC-B ² > 0, A < 0. Тогда , и при достаточно малых Δρ. Следовательно, в некоторой окрестности М 0 f (x 0 + Δx, y 0 + Δy) < f (x 0 , y 0) , то есть М 0 – точка максимума.

2) Пусть AC – B ² > 0, A > 0. Тогда , и М 0 – точка минимума.

3) Пусть AC-B ² < 0, A > 0. Рассмотрим приращение аргументов вдоль луча φ = 0. Тогда из (5.1) следует, что , то есть при движении вдоль этого луча функция возрастает. Если же перемещаться вдоль луча такого, что tg φ 0 = -A/B, то , следовательно, при движении вдоль этого луча функция убывает. Значит, точка М 0 не является точкой экстремума.

3`) При AC – B ² < 0, A < 0 доказательство отсутствия экстремума проводится

аналогично предыдущему.

3``) Если AC – B ² < 0, A = 0, то . При этом . Тогда при достаточно малых φ выражение 2B cosφ + C sinφ близко к 2В , то есть сохраняет постоянный знак, а sinφ меняет знак в окрестности точки М 0 . Значит, приращение функции меняет знак в окрестности стационарной точки, которая поэтому не является точкой экстремума.

4) Если AC – B ² = 0, а , , то есть знак приращения определяется знаком 2α 0 . При этом для выяснения вопроса о существовании экстремума необходимо дальнейшее исследование.

Пример. Найдем точки экстремума функции z = x ² - 2xy + 2y ² + 2x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда AC – B ² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).

Определение 5.4. Если аргументы функции f (x 1 , x 2 ,…, x n) связаны дополнительными условиями в виде m уравнений (m < n) :

φ 1 (х 1 , х 2 ,…, х n) = 0, φ 2 (х 1 , х 2 ,…, х n) = 0, …, φ m (х 1 , х 2 ,…, х n) = 0, (5.2)

где функции φ i имеют непрерывные частные производные, то уравнения (5.2) называются уравнениями связи .

Определение 5.5. Экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2) называется условным экстремумом .

Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ(х,у) = 0, задающим некоторую кривую в плоскости Оху . Восставив из каждой точки этой кривой перпендикуляры к плоскости Оху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ(х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).

Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:

Определение 5.6. Функция L (x 1 , x 2 ,…, x n) = f (x 1 , x 2 ,…, x n) + λ 1 φ 1 (x 1 , x 2 ,…, x n) +

+ λ 2 φ 2 (x 1 , x 2 ,…, x n) +…+λ m φ m (x 1 , x 2 ,…, x n) , (5.3)

где λ i – некоторые постоянные, называется функцией Лагранжа , а числа λ i неопределенными множителями Лагранжа .

Теорема 5.3 (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).

Доказательство. Уравнение связи задает неявную зависимость у от х , поэтому будем считать, что у есть функция от х : у = у(х). Тогда z есть сложная функция от х , и ее критические точки определяются условием: . (5.4) Из уравнения связи следует, что . (5.5)

Умножим равенство (5.5) на некоторое число λ и сложим с (5.4). Получим:

, или .

Последнее равенство должно выполняться в стационарных точках, откуда следует:

(5.6)

Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5.6) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.

Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 5.2.

Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2), можно определить как решения системы (5.7)

Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y – 1). Система (5.6) при этом выглядит так:

Откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = - 0,5 (x – y )² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y) имеет максимум, а z = xy – условный максимум.

Необходимое и достаточные условия экстремума функций двух переменных. Точка называется точкой минимума (максимума) функции если в некоторой окрестности точки функция определена и удовлетворяет неравенству (соответственно Точки максимума и минимума называются точками экстремума функции.

Необходимое условие экстремума. Если в точке экстремума функция имеет первые частные производные, то они обращаются в этой точке в нуль. Отсюда следует, что для отыскания точек экстремума такой функции следует решить систему уравнений Точки, координаты которых удовлетворяют этой системе, называются критическими точками функции. Среди них могут быть точки максимума, точки минимума, а также точки, не являющиеся точками экстремума.

Достаточные условия экстремума используются для выделения точек экстремума из множества критических точек и перечислены ниже.

Пусть функция имеет в критической точке непрерывные вторые частные производные. Если в этой точке выполняется

условие то она является точкой минимума при и точкой максимума при Если в критической точке то она не является точкой экстремума. В случае требуется более тонкое исследование характера критической точки, которая в этом случае может быть точкой экстремума, а может и не быть таковой.

Экстремумы функций трех переменных. В случае функции трех переменных определения точек экстремума дословно повторяют соответствующие определения для функции двух переменных. Ограничимся изложением порядка исследования функции на экстремум. Решая систему уравнений следует найти критические точки функции, а затем в каждой из критических точек вычислить величины

Если все три величины положительны, то рассматриваемая критическая точка является точкой минимума; если то данная критическая точка является точкой максимума.

Условный экстремум функции двух переменных. Точка называется точкой условного минимума (максимума) функции при условии если существует окрестность точки в которой функция определена и в которой (соответственно ) для всех точек координаты которых удовлетворяют уравнению

Для нахождения точек условного экстремума используют функцию Лагранжа

где число называется множителем Лагранжа. Решая систему трех уравнений

находят критические точки функции Лагранжа (а также значение вспомогательного множителя Л). В этих критических точках может быть условный экстремум. Приведенная система дает лишь необходимые условия экстремума, но не достаточные: ей могут удовлетворять координаты точек, не являющихся точками условного экстремума. Однако, исходя из существа задачи, часто удается установить характер критической точки.

Условный экстремум функции многих переменных. Рассмотрим функцию переменных при условии, что связаны уравнениями

Пример

Найти экстремум функции при условии, чтох и у связаны соотношением: . Геометрически задача означает следующее: на эллипсе
плоскостью
.

Эту задачу можно решать так: из уравнения
находим
х :


при условии, что
, свелась к задаче нахождения экстремума функции одной переменной, на отрезке
.

Геометрически задача означает следующее: на эллипсе , полученном при пересечении цилиндра
плоскостью
, требуется найти максимальное или минимальное значение аппликаты(рис.9). Эту задачу можно решать так: из уравнения
находим
. Подставляя найденное значение у в уравнение плоскости, получаем функцию одной переменнойх :

Тем самым задача о нахождении экстремума функции
при условии, что
, свелась к задаче нахождения экстремума функции одной переменной, на отрезке.

Итак, задача отыскания условного экстремума – это задача о нахождении экстремума целевой функции
, при условии, что переменныех и у подчиняются ограничению
, называемомууравнением связи.

Будем говорить, что точка
, удовлетворяющая уравнению связи,является точкой локального условного максимума (минимума ), если существует окрестность
такая, что для любых точек
, координаты которых удовлетворяют уравнению связи, выполнено неравенство.

Если из уравнения связи можно найти выражение для у , то, подставляя это выражение в исходную функцию, превращаем последнюю в сложную функцию одной переменной х.

Общим методом решения задачи на условный экстремум является метод множителей Лагранжа . Составим вспомогательную функцию, где─ некоторое число. Это функция называетсяфункцией Лагранжа , а ─ множителем Лагранжа. Таким образом, задача нахождения условного экстремума свелась к нахождению точек локального экстремума для функции Лагранжа. Для нахождения точек возможного экстремума надо решить систему из 3-х уравнений с тремя неизвестнымих, у и.

Затем следует воспользоваться следующим достаточным условием экстремума.

ТЕОРЕМА . Пусть точка является точкой возможного экстремума для функции Лагранжа. Предположим, что в окрестности точки
существуют непрерывные частные производные второго порядка функцийи. Обозначим

Тогда, если
, то
─ точка условного экстремума функции
при уравнении связи
при этом, если
, то
─ точка условного минимума, если
, то
─ точка условного максимума.

§8. Градиент и производная по направлению

Пусть функция
определена в некоторой (открытой) области. Рассмотрим любую точку
этой области и любую направленную прямую (ось), проходящую через эту точку (рис. 1). Пусть
– какая-нибудь другая точка этой оси,
­– длина отрезка между
и
, взятая со знаком «плюс», если направление
совпадает с направлением оси, и со знаком «минус», если их направления противоположны.

Пусть
неограниченно приближается к
. Предел

называется производной от функции
по направлению
(или вдоль оси) и обозначается следующим образом:

.

Эта производная характеризует «скорость изменения» функции в точке
по направлению. В частности, и обычные частные производные,также можно рассматривать как производные «по направлению».

Предположим теперь, что функция
имеет в рассматриваемой области непрерывные частные производные. Пусть осьобразует с осями координат углы
и. При сделанных предположениях производная по направлениюсуществует и выражается формулой

.

Если вектор
задан своими координатами
, то производную функции
по направлению вектора
можно вычислить по формуле:

.

Вектор с координатами
называетсявектором-градиентом функции
в точке
. Вектор-градиент указывает направление наиболее быстрого возрастания функции в данной точке.

Пример

Дана функция , точка A(1, 1) и вектор
. Найти: 1)grad z в точке A; 2) производную в точке A по направлению вектора .

Частные производные данной функции в точке
:

;
.

Тогда вектор-градиент функции в этой точке:
. Вектор-градиент еще можно записать с помощью разложения по векторами:

. Производная функции по направлению вектора:

Итак,
,
.◄