Сложение вероятностей несовместных событий примеры. Теорема сложения вероятностей совместных событий

Пусть события А и В ― несовместные, причем вероятности этих событий известны. Вопрос: как найти вероятность того, что наступит одно из этих несовместных событий? На этот вопрос ответ дает теорема сложения.

Теорема. Вероятностьпоявления одного из двух несовместных событий равна сумме вероятностей этих событий:

p (А + В ) = p (А ) + p (В ) (1.6)

Доказательство. Действительно, пусть n – общее число всех равновозможных и несовместных (т.е. элементарных) исходов. Пусть событию А благоприятствует m 1 исходов, а событию В m 2 исходов. Тогда согласно классическому определению вероятности этих событий равны: p (А ) = m 1 / n , p (B ) = m 2 / n .

Так как события А и В несовместные, то ни один из исходов, благоприятствующих событию А , не благоприятствует событию В (см. схему ниже).

Поэтому событию А +В будут благоприятствовать m 1 + m 2 исходов. Следовательно, для вероятности p (А + В ) получим:

Следствие 1. Сумма вероятностей событий, образующих полную группу, равна единице:

p (А ) + p (В ) + p (С ) + … + p (D ) = 1.

Действительно, пусть события А , В , С , … , D образуют полную группу. В силу этого они являются несовместными и единственно возможными. Поэтому событие А + В + С + …+ D , состоящее в появлении (в результате испытания) хотя бы одного из этих событий, является достоверным, т.е. А+В+С+…+ D = и p (А+В+С+ …+ D ) = 1.

В силу несовместности событий А , В , С ,, D справедлива формула:

p (А+В+С+ …+ D ) = p (А ) + p (В ) + p (С ) + … + p (D ) = 1.

Пример. В урне 30 шаров, из них 10 красных, 5 синих и 15 белых. Найти вероятность извлечения красного или синего шара при условии, что из урны извлекли только один шар.

Решение. Пусть событие А 1 – извлечение красного шара, а событие А 2 – извлечение синего шара. Данные события несовместны, причём p (А 1) = 10 / 30 = 1 / 3; p (А 2) = 5 / 30 = 1 /6. По теореме сложения получим:

p (А 1 + А 2) = p (А 1) + p (А 2) = 1 / 3 + 1 / 6 = 1 / 2.

Замечание 1. Подчеркнём, что по смыслу задачи необходимо прежде всего установить характер рассматриваемых событий – являются ли они несовместными. Если приведённую теорему применять к совместным событиям, то результат получится неверным.

Сложение и умножение вероятностей. В этой статье речь пойдёт о решении задач по теории вероятностей. Ранее мы с вами уже разбирали некоторые простейшие задания, для их решения достаточно знать и понимать формулу (советую повторить).

Есть тины задачи немного сложнее, для их решения необходимо знать и понимать: правило сложения вероятностей, правило умножения вероятностей, понятия зависимые и независимые события, противоположные события, совместные и несовместные события. Не пугайтесь определений, все просто)). В этой статье мы с вами именно такие задачи и рассмотрим.

Немного важной и простой теории:

несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Классический пример: при бросании игральной кости (кубика) может выпасть только единица, либо только двойка, либо только тройка и т.д. Каждое из этих событий несовместно с другими и совершение одного из них исключает совершение другого (в одном испытании). Тоже самое с монетой — выпадение «орла» исключает возможность выпадение «решки».

Также это относится и к более сложным комбинациям. Например, горят две лампы освещения. Каждая из них может перегореть или не перегореть в течение какого-то времени. Существую варианты:

  1. Перегорает первая и перегорает вторя
  2. Перегорает первая и не перегорает вторая
  3. Не перегорает первая и перегорает вторая
  4. Не перегорает первая и перегорает вторая.

Все эти 4 варианта событий несовместны — они вместе произойти просто не могут и никакое из них с любым другим...

Определение: События называются совместными , если появление одного из них не исключает появление другого.

Пример: из колоды карт будет взята дама и из колоды карт будет взята карта пик. Рассматриваются два события. Данные события не исключают друг друга — можно вытащить даму пик и, таким образом, произойдут оба события.

О сумме вероятностей

Суммой двух событий А и В называется событие А+В, которое состоит в том, что наступит или событие А или событие В или оба одновременно.

Если происходят несовместные события А и В, то вероятность суммы данных событий равна сумме вероятностей событий:


Пример с игральной костью:

Бросаем игральную кость. Какова вероятность выпадения числа меньшего четырёх?

Числа меньшие четырёх это 1,2,3. Мы знаем, что вероятность выпадения единицы равна 1/6, двойки 1/6, тройки 1/6. Это несовместные события. Можем применить правило сложения. Вероятность выпадения числа меньшего четырёх равна:

Действительно, если исходить из понятия классической вероятности: то число всевозможных исходов равно 6 (число всех граней кубика), число благоприятных исходов равно 3 (выпадение единицы, двойки или тройки). Искомая вероятность равна 3 к 6 или 3/6 = 0,5.

*Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учёта их совместного появления: Р(А+В)=Р(А)+Р(В) -Р(АВ)

Об умножении вероятностей

Пусть происходят два несовместных события А и В, их вероятности соответственно равны Р(А) и Р(В). Произведением двух событий А и В называют такое событие А·В, которое состоит в том что эти события произойдут вместе, то есть произойдёт и событие А и событие В. Вероятность такого события равна произведению вероятностей событий А и В. Вычисляется по формуле:

Как вы уже заметили логическая связка «И» означает умножение.

Пример с той же игральной костью: Бросаем игральную кость два раза. Какова вероятность выпадения двух шестёрок?

Вероятность выпадения шестёрки первый раз равна 1/6. Во второй раз так же равна 1/6. Вероятность выпадения шестёрки и в первый раз и во второй раз равна произведению вероятностей:

Говоря простым языком: когда в одном испытании происходит некоторое событие, И далее происходит(ят) другое (другие), то вероятность того что они произойдут вместе равна произведению вероятностей этих событий.

Задачи с игральной костью мы решали, но пользовались только логическими рассуждениями, формулу произведения не использовали. В рассматриваемых же ниже задачах без формул не обойтись, вернее с ними будет получить результат проще и быстрее.

Стоит сказать ещё об одном нюансе. При рассуждениях в решении задач используется понятие ОДНОВРЕМЕННОСТЬ совершения событий. События происходят ОДНОВРЕМЕННО — это не означает, что они происходят в одну секунду (в один момент времени). Это значит, что они происходят в некоторый промежуток времени (при одном испытании).

Например:

Две лампы перегорают в течение года (может быть сказано — одновременно в течение года)

Два автомата ломаются в течении месяца (может быть сказано — одновременно в течение месяца)

Игральная кость бросается три раза (очки выпадают одновременно это означает при одном испытании)

Биатлонист делает пять выстрелов. События (выстрелы) происходят во время одного испытания.

События А и В являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события.

Рассмотрим задачи:

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35 % этих стекол, вторая –– 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая –– 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Первая фабрика выпускает 0,35 продукции (стёкол). Вероятность купить бракованное стекло с первой фабрики равна 0,04.

Вторая фабрика выпускает 0,65 стёкол. Вероятность купить бракованное стекло со второй фабрики равна 0,02.

Вероятность того, что стекло куплено на первой фабрике И при этом оно окажется бракованным равна 0,35∙0,04 = 0,0140.

Вероятность того, что стекло куплено на второй фабрике И при этом оно окажется бракованным равна 0,65∙0,02 = 0,0130.

Покупка в магазине бракованного стекла подразумевает, что оно (бракованное стекло) куплено ЛИБО с первой фабрики, ЛИБО со второй. Это несовместные события, то есть полученные вероятности складываем:

0,0140 + 0,0130 = 0,027

Ответ: 0,027

Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,62. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,2. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Возможность выиграть первую и вторую партию не зависят друг от друга. Сказано, что гроссмейстер должен выиграть оба раза, то есть выиграть первый раз И при этом выиграть ещё и второй раз. В случае, когда независимые события должны произойти совместно вероятности этих событий перемножаются, то есть используется правило умножения.

Вероятность произведения указанных событий будет равна 0,62∙0,2 = 0,124.

Ответ: 0,124

На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,3. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

То есть необходимо найти вероятность того, что школьнику достанется вопрос ЛИБО по теме «Вписанная окружность», ЛИБО по теме «Параллелограмм». В данном случае вероятности суммируются, так как это события несовместные и произойти может любое из этих событий: 0,3 + 0,25 = 0,55.

*Несовместные события – это события, которые не могут произойти одновременно.

Ответ: 0,55

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что биатлонист первые четыре раза попал в мишени, а последний промахнулся. Результат округлите до сотых.

Поскольку биатлонист попадает в мишень с вероятностью 0,9, то он промахивается с вероятностью 1 – 0,9 = 0,1

*Промах и попадание это события, которые при одном выстреле не могут произойти одновременно, сумма вероятностей этих событий равна 1.

Речь идёт о совершении нескольких (независимых) событий. Если происходит событие и при этом происходит другое (последующие) в одно время (испытание), то вероятности этих событий перемножаются.

Вероятность произведения независимых событий равна произведению их вероятностей.

Таким образом, вероятность события «попал, попал, попал, попал, промахнулся» равна 0,9∙0,9∙0,9∙0,9∙0,1 = 0,06561.

Округляем до сотых, получаем 0,07

Ответ: 0,07

В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,07 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, значит вероятность будет равна произведению вероятностей этих событий: 0,07∙0,07 = 0,0049.

Значит, вероятность того, что исправны оба автомата или какой-то из них будет равна 1 – 0,0049 = 0,9951.

*Исправны оба и какой-то один полностью – отвечает условию «хотя бы один».

Можно представить вероятности всех (независимых) событий для проверки:

1. «неисправен-неисправен» 0,07∙0,07 = 0,0049

2. «исправен-неисправен» 0,93∙0,07 = 0,0651

3. «неисправен-исправен» 0,07∙0,93 = 0,0651

4. «исправен-исправен» 0,93∙0,93 = 0,8649

Чтобы определить вероятность того, что исправен хотя бы один автомат, необходимо сложить вероятности независимых событий 2,3 и 4: Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.

Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.

Определение: События называются равновозможными , если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.

В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.

В мы рассмотрим ещё задачи, где используется сумма и произведение вероятностей событий, не пропустите!

На этом всё. Успехов вам!

С уважением, Александр Крутицких.

Марья Ивановна ругает Васю:
— Петров, ты почему вчера не был в школе?!
— Мне мама вчера штаны постирала.
— Ну и что?
— А я шел мимо дома и увидел, что Ваши висят. Думал, не придете.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

В случаях, когда интересующее событие является суммой других событий, для нахождения его вероятности используется формула сложения.

Формула сложения имеет две основные разновидности – для совместных и для несовместных событий. Обосновать эти формулы можно, используя диаграммы Венна (рис. 21). Напомним, что на этих диаграммах вероятности событий численно равны площадям соответствующих этим событиям зон.

Для двух несовместных событий :

Р(А+В) = Р(А) + Р(В). (8, а)

Для N несовместных событий , вероятность их суммы равна сумме вероятностей этих событий:

= .(8б)

Из формулы сложения несовместных событий имеются два важных следствия.

Следствие 1. Для событий, образующих полную группу, сумма их вероятностей равна единице:

= 1.

Это объясняется следующим. Для событий, образующих полную группу, в левой части выражения (8б) находится вероятность того, что произойдёт одно из событий А i , но так как полная группа исчерпывает весь перечень возможных событий, то одно из таких событий произойдёт обязательно. Таким образом, в левой части записана вероятность события, которое обязательно произойдёт – достоверного события. Вероятность его равна единице.

Следствие 2. Сумма вероятностей двух противоположных событий равна единице :

Р(А) + Р(Ā) = 1.

Это следствие вытекает из предыдущего, так как противоположные события всегда образуют полную группу.

Пример 15

В ероятность работоспособного состояния технического устройства равна 0,8. Найти вероятность отказа этого устройства за тот же период наблюдений.

Решение.

Важное замечание . В теории надёжности принято вероятность работоспособного состояния обозначать буквой р , а вероятность отказа - буквой q. В дальнейшем будем использовать эти обозначения. Как та, так и другая вероятности являются функциями времени. Так, для больших периодов времени вероятность работоспособного состояния любого объекта приближается к нулю. Вероятность отказа любого объекта близка к нулю для малых периодов времени. В тех случаях, когда период наблюдения в задачах не указан, подразумевается, что он одинаков для всех рассматриваемых объектов.

Нахождение устройства в состояниях работоспособности и отказа – противоположные события. Пользуясь следствием 2, получим вероятность отказа устройства:

q = 1 – р = 1 – 0,8 = 0,2.

Для двух совместных событий формула сложения вероятностей имеет вид:

Р(А+В) = Р(А) + Р(В) – Р(АВ ), (9)

что иллюстрирует диаграмма Венна (рис. 22).

Действительно, чтобы найти всю заштрихованную площадь (она соответствует сумме событий А + В), нужно из суммы площадей фигур А и В вычесть площадь общей зоны (она соответствует произведению событий АВ), так как иначе она будет учтена дважды.


Для трех совместных событий формула сложения вероятностей усложняется:

Р(А+В+С)=Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) + Р(АВС). (10)

На диаграмме Венна (рис. 23) искомая вероятность численно равна общей площади зоны, образованной событиями А, В и С (для упрощения рисунка единичный квадрат на нем не показан).

После того, как из суммы площадей зон А, В и С вычтены площади зон АВ, АС и СВ получилось, что площадь зоны АВС была просуммирована трижды и трижды вычтена. Поэтому для учета этой площади она должна быть добавлена в окончательное выражение.

При увеличении числа слагаемых формула сложения становится всё более и более громоздкой, но принцип её построения остаётся прежним: сначала суммируются вероятности событий взятых по одиночке, затем вычитаются вероятности всех по парных комбинаций событий, прибавляются вероятности событий взятых тройками, вычитаются вероятности комбинаций событий взятых четверками и т.д.

В итоге следует подчеркнуть: формула сложения вероятностей совместных событий при количестве слагаемых от трех и более громоздка и неудобна к применению, использование ее при решении задач нецелесообразно .

Пример 16

Для ниже приведенной схемы электроснабжения (рис. 24) определить вероятность отказа системы в целом Q С по вероятностям отказа q i отдельных элементов (генератора, трансформаторов и линии).


Состояния отказа отдельных элементов системы электроснабжения, так же как и состояния работоспособности, всегда являются попарно совместными событиями , так как нет никаких принципиальных препятствий к тому, чтобы одновременно производился ремонт, например, линии и трансформатора. Отказ системы наступает при отказе любого её элемента: или генератора, или 1-го трансформатора, или линии, или 2-го трансформатора, или при отказе любой пары, любой тройки или всех четырёх элементов. Следовательно, искомое событие – отказ системы является суммой отказов отдельных элементов. Для решения задачи может быть использована формула сложения совместных событий:

Q с = q г + q т1 + q л + q т2 – q г q т1 – q г q л – q г q т2 – q т1 q л – q т1 q т2 – q л q т2 + q г q т1 q л + q г q л q т2 + q г q т1 q т2 + q т1 q т2 q л – q г q т1 q л q т2.

Это решение ещё раз убеждает в громоздкости формулы сложения для совместных событий. В дальнейшем будет рассмотрен другой более рациональный способ решения данной задачи.

Полученное выше решение может быть упрощено с учётом того, что вероятности отказов отдельных элементов системы электроснабжения для применяемого обычно в расчётах надежности периода в один год достаточно малы (порядка 10 -2). Поэтому все слагаемые кроме первых четырех можно отбросить, что практически не повлияет на численный результат. Тогда можно записать:

Q с q г + q т1 + q л + q т2 .

Однако к подобным упрощениям надо относится осторожно, внимательно изучая их последствия, так как часто отбрасываемые слагаемые могут оказаться соизмеримыми с первыми.

Пример 17

Определить вероятность работоспособного состояния системы Р С , состоящей из трех резервирующих друг друга элементов.

Решение . Резервирующие друг друга элементы на логической схеме анализа надёжности изображаются соединенными параллельно (рис. 25):

Резервированная система работоспособна, когда работоспособен или 1-й, или 2-й, или 3-й элемент, или работоспособна любая пара, или все три элемента совместно. Следовательно, работоспособное состояние системы есть сумма работоспособных состояний отдельных элементов. По формуле сложения для совместных событий Р с = Р 1 + Р 2 + Р 3 – Р 1 Р 2 – Р 1 Р 3 – Р 2 Р 3 + Р 1 Р 2 Р 3 . , где Р 1 , Р 2 и Р 3 – вероятности работоспособного состояния элементов 1, 2 и 3 соответственно.

В данном случае упрощать решение, отбрасывая по парные произведения нельзя, поскольку такое приближение даст значительную погрешность (эти произведения обычно числено близки к первым трём слагаемым). Как и в примере 16, эта задача имеет другое более компактное решение.

Пример 18

Для двухцепной линии электропередачи (рис. 26) известна вероятность отказа каждой цепи: q 1 = q 2 = 0,001. Определить вероятности того, что линия будет иметь стопроцентную пропускную способность – Р(R 100), пятидесяти процентную пропускную способность - Р(R 50), и вероятность того, что система откажет – Q.

Линия имеет стопроцентную пропускную способность, когда работоспособна и 1-я и 2-я цепь:

Р(100%) = р 1 р 2 = (1 – q 1)(1 – q 2) =

= (1 – 0,001)(1 – 0,001) = 0,998001.

Линия отказывает, когда отказывает и 1-я и 2-я цепь:

Р(0%) = q 1 q 2 =0,001∙0,001 = 10 -6 .

Линия имеет пятидесяти процентную пропускную способность, когда работоспособна 1-я цепь и отказала 2-я, или когда работоспособна 2-я цепь и отказала 1-я:

Р(50%)= р 1 q 2 + р 2 q 1 = 2∙0,999∙10 -3 = 0,001998.

В последнем выражении использована формула сложения для несовместных событий, каковыми они и являются.

События, рассмотренные в этой задаче, составляют полную группу, поэтому сумма их вероятностей составляет единицу.

Лекция 7. Теория вероятностей

СЛЕДСТВИЯ ТЕОРЕМ СЛОЖЕНИЯ И УМНОЖЕНИЯ

Теорема сложения вероятностей совместных событий

Была рассмотрена теорема сложения для несовместных событий. Здесь будет изложена теорема сложения для совместных событий.

Два события называют совместными , если появление одного из них не исключает появления другого в одном и том же испытании.

Пример 1 . А – появление четырех очков при бросании игральной кости; В – появление четного числа очков. События А и В – совместные.

Пусть события А и В совместны, причем даны вероятности этих событий и вероятность их совместного появления. Как найти вероятность события А + В, состоящего в том, что появится хотя бы одно из событий А и В? Ответ на этот вопрос дает теорема сложения вероятностей совместных событий.

Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления: Р(А + В) = Р(А) + Р(В) – Р(АВ).

Доказательство . Поскольку события А и В, по условию, совместны, то событие А + В наступит, если наступит одно из следующих трех несовместных событий: . По теореме сложения вероятностей несовместных событий, имеем:

Р(А + В) = Р(А ) + Р( В) + Р(АВ). (*)

Событие А произойдет, если наступит одно из двух несовместных событий: А
или АВ. По теореме сложения вероятностей несовместных событий имеем

Р(А) = Р(А ) + Р(АВ).

Р(А )=Р(А) – Р(АВ). (**)

Аналогично имеем

Р(В) = Р(ĀВ) + Р(АВ).

Р(ĀВ) = Р(В) – Р(АВ). (***)

Подставив (**) и (***) в (*), окончательно получим

Р(А + В) = Р(А) + Р(В) – Р(АВ). (****)

Что и требовалось доказать.

Замечание 1. При использовании полученной формулы следует иметь в виду, что события А и В могут быть как независимыми , так и зависимыми .

Для независимых событий

Р(А + В) = Р(А) + Р(В) – Р(А)*Р(В);

Для зависимых событий

Р(А + В) = Р(А) + Р(В) – Р(А)*Р А (В).

Замечание 2. Если события А и В несовместны , то их совмещение есть невозможное событие и, следовательно, Р(АВ) = 0.

Формула (****) для несовместных событий принимает вид

Р(А + В) = Р(А) + Р(В).

Мы вновь получили теорему сложения для несовместных событий. Таким образом, формула (****) справедлива как для совместных, так и для несовместных событий.

Пример 2. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: p 1 = 0,7; p 2 = 0,8. Найти вероятность попадания при одном залпе
(из обоих орудий) хотя бы одним из орудий.

Решение . Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А (попадание первого орудия) и В (попадание второго орудия) независимы.


Вероятность события АВ (оба орудия дали попадание)

Р(АВ) = Р(А) * Р(В) = 0,7 * 0,8 = 0,56.

Искомая вероятность Р(А + В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

Замечание 3. Так как в настоящем примере события А и В независимые, то можно было воспользоваться формулой Р = 1 – q 1 q 2

В самом деле, вероятности событий, противоположных событиям А и В, т.е. вероятности промахов, таковы:

q 1 = 1 – p 1 = 1 – 0,7 = 0,3;

q 2 = 1 – p 2 = 1 – 0,8 = 0,2;

Искомая вероятность того, что при одном залпе хотя бы одно орудие даст попадание, равна

P = 1 – q 1 q 2 = 1 – 0,3 * 0,2 = 1 – 0,06 = 0,94.

Как и следовало ожидать, получен тот же результат.

Теоремы сложения и умножения вероятностей

Теорема сложения

Вероятность наступления одного из нескольких несовместных событий равна сумме вероятностей этих событий.

В случае двух несовместных событий А и В имеем:

Р(А+В) = Р(А) + Р(В) (7)

Событие, противоположное событию А обозначают . Объединение событий А и даёт событие достоверное, а поскольку события А и несовместны, то

Р(А) +Р() = 1 (8)

Вероятность события А, вычисленная в предположении, что событие В наступило, называется условной вероятностью события А и обозначается символом Р В (А).

Если события А и В независимые, то Р(В) = Р А (В).

События А, В, С, … называются независимыми в совокупности , если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой комбинации их и в любом числе.

Теорема умножения

Вероятность того, что произойдут события и А, и В, и С, … равна произведению их вероятностей, вычисленных в предположении, что все предшествующие каждому из них события имели место, т. е.

Р(АВ) = Р(А)Р А (В) (9)

Запись Р А (В) обозначает вероятность события В в предположении, что событие А уже имело место.

Если события А, В, С, … независимы в совокупности, то вероятность того, что произойдут все они, равна произведению их вероятностей:

Р(АВС) = Р(А)Р(В)Р(С) (10)

Пример 3.1. В мешке лежат шары: 10 белых, 15 чёрных, 20 голубых и 25 красных. Вынули один шар. Найти вероятность того, что вынутый шар окажется белым? чёрным? И ещё: белый или чёрный?

Решение.

Число всех возможных испытаний n = 10 + 15 + 20 + 25 = 70;

Вероятность Р(б) = 10/70 = 1/7, Р(ч) = 15/70 = 3/14.

Применяем теорему сложения вероятностей:

Р(б + ч) = Р(б) + Р(ч) = 1/7 + 3/14 = 5/14.

Примечание: заглавные буквы в скобках соответственно обозначают цвет каждого шара согласно условию задачи.

Пример 3.2 В первом ящике два белых и десять чёрных шаров. Во втором ящике восемь белых и четыре чёрных шара. Из каждого ящика вынули по шару. Определить вероятность того, что оба шара окажутся белыми.

Решение.

Событие А – появление белого шара из первого ящика. Событие В – появление белого шара из второго ящика. События А и В – независимые.

Вероятности Р(А) = 2/12 = 1/6, Р(В) = 8/12 = 2/3.

Применяем теорему умножения вероятностей:

Р(АВ) = Р(А)Р(В) = 2/18 = 1/9.

Вопросы для повторения

1 Что называется факториалом?

2 Перечислите основные задачи комбинаторики.

3 Что называется перестановками?

4 Что называется перемещениями?

5 Что называется сочетаниями?

6 Какие события называются достоверными?

7 Какие события называются несовместными?

8 Что называется вероятностью события?

9 Что называется условной вероятностью?

10 Сформулируйте теоремы сложения и умножения вероятностей.

11 пр .Размещением из п элементов по к (к ≤ п ) называется любое множество, состоящее из к элементов, взятых в определенном порядке из данных п элементов.

Таким образом, два размещения из п элементов по к считаются различными, если они различаются самими элементами или порядком их расположения Число размещений из п элементов по к обозначают А п к и вычисляют по формуле

А п к =

Если размещения из п элементов по п отличаются друг от друга только порядком элементов, то они представляют собой перестановки из п элементов

Пример1 . Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета

Решение: Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо набором предметов, либо порядком их следования. Значит, в этом примере речь идет о размещениях из 9 элементов по 4. Имеем

А 9 4 = = 6 ∙ 7 ∙ 8 ∙ 9 = 3024

Расписание можно составить 3024 способами

Пример2. Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5,6 ?

Решение Если среди семи цифр нет нуля, то число трехзначных чисел (без повторения цифр), которые можно составить из этих цифр, равно числу размещений

22

из 7 элементов по 3. Однако среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтом из размещений из 7 элементов по3 надо исключить те, у которых первым элементом является 0. Их число равно числу размещений их 6 элементов по 2. =

Значит искомое число трехзначных чисел равно

А 7 3 - А 6 2 = - = 5 ∙ 6 ∙ 7 - 5 ∙ 6 = 180.

3. Закрепление полученных знаний в процессе решения задач

754 . Сколькими способами может разместиться семья из трех человек в четырехместном купе, если других пассажиров в купе нет?

Решение. Число способов равно А 4 3 = = 1∙ 2 ∙ 3 ∙ 4 = 24

755. Из 30 участников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать?

Решение. Т.к.любой из участников может быть как секретарем, так и председателем, то число способов их избрания равно

А 30 2 = = = 29 ∙ 30 = 870

762 Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: а) 1,3,5,7,9. б) 0,2,4,6,8?

Решение а) А 5 4 = = 1∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120

б)) А 5 4 - А 4 3 = 5! – 4! = 120 – 24= 96

Домашнее задание № 756, №757, № 758, №759.

6урок Тема: « Сочетания»

Цель: Дать понятие о сочетаниях, познакомить с формулой для вычисления сочетаний, научить применять эту формулу для подсчета числа сочетаний.

1 Проверка домашнего задания.

756 . На станции 7 запасных путей. Сколькими способами можно расставить на них 4 поезда?

23

Решение: А 7 4 = = 4 ∙ 5 ∙ 6 ∙ 7 = 20 ∙ 42 = 840 способов

757 Сколькими способами тренер может определить, кто из 12 спортсменок, готовых к участию в эстафете 4х100м, побежит на первом, втором, третьем и четвертом этапах?

Решение: А 12 4 = = 9 ∙ 10 ∙ 11 ∙12 = 90 ∙132 = 11 880

758. В круговой диаграмме круг разбит на 5 секторов. Секторы решили закрасить разными красками, взятыми из набора, содержащего 10 красок. Сколькими способами это можно сделать?

Решение: А 10 5 = = 6 ∙ 7 ∙ 8 ∙ 9∙ 10 = 30 240

759. Сколькими способами 6 студентов, сдающих экзамен, могут занять места в аудитории, в которой 20 одноместных столов?

Решение: А 20 6 = = 15∙ 16 ∙17∙ 18∙19 ∙20 = 27 907 200

Организовать проверку домашнего задания можно разными способами: устно проверить решение домашних упражнений, решения некоторых из них записать на доске, а пока идет запись решений провести опрос уч-ся по вопросам:



1. Что означает запись п!

2.Что называется перестановкой из п элементов?

3.По какой формуле считают число перестановок?

4. Что называют размещением из п элементов по к?

5. п элементов по к?

2 Объяснение нового материала

Пусть имеются 5 гвоздик разного цвета. Обозначим их буквами а, в, с, д, е. Требуется составить букет из трех гвоздик. Выясним, какие букеты могут быть составлены.

Если в букет входит гвоздика а , то можно составить такие букеты:

авс, авд, аве, асд, асе, аде.

Если в букет не входит гвоздика а, но входит гвоздика в , то можно получить такие букеты:

всд, все, вде.

Наконец, если в букет не входит ни гвоздика а, ни гвоздика в, то возможен только один вариант составления букета:

сде.

24

Мы указали все возможные способы составления букетов, в которых по – разному сочетаются три гвоздики из 5. Говорят, что мы составили все возможные сочетания из 5 элементов по 3, мы нашли, что С 5 3 = 10.

Выведем формулу числа сочетаний из п элементов по к, где к ≤ п.

Выясним сначала, как С 5 3 выражается через А 5 3 и Р 3 . Мы нашли, что их 5 элементов можно составить следующие сочетания по 3 элемента:

авс, авд, аве, асд, асе, аде, всд, все, вде, сде.

В каждом сочетании выполним все перестановки. Число перестановок из 3 элементов равно Р 3 . В результате получим все возможные комбинации из 5 элементов по 3, которые различаится либо самими элементами, либо порядком элементов, т.е. все размещения из 5 элементов по 3. Всего мы получим А 5 3 размещений.

Значит , С 5 3 ∙ Р 3 = А 5 3 , отсюда С 5 3 = А 5 3: Р 3

Рассуждая в общем случае получим С п к = А п к: Р к,

Пользуясь тем, что А п к = , где к ≤ п., получим С п к = .

Это формула для вычисления числа сочетаний из п элементов по к при любом

к ≤ п.

Пример1 . Из набора, состоящего из 15 красок, надо выбрать3 краски для окрашивания шкатулки. Сколькими способами можно сделать этот выбор?

Решение: Каждый выбор трех красок отличается от другого хотя бы одной краской. Значит, здесь речь идет о сочетаниях из 15 элементов по 3

С 15 3 = = (13∙ 14∙15) : (1∙ 2 ∙ 3) = 455

Приме2 В классе учатся 12 мальчиков и 10 девочек. Для уборки территории около школы требуется выделить трех мальчиков и двух девочек. Сколькими способами можно сделать этот выбор?

Решение: Выбрать 3 мальчиков из 12 можно С 12 3 , а двух девочек из 10 можно выбрать С 10 2 . Т. к. при каждом выборе мальчиков можно С 10 2 способами выбрать девочек, то сделать выбор учащихся, о котором говориться в задаче можно

С 12 3 ∙ С 10 2 = ∙ = 220 ∙ 45 = 9900

3) Закрепление нового материала, в процессе решения задач

25

Задача

У Саши в домашней библиотеке есть 8 исторических романов. Петя хочет взять у него 2 любых романа. Сколькими способами можно сделать этот выбор?

Решение: С 8 2 = = (7 ∙ 8) : ( 1∙ 2) = 56: 2 = 28

779 а

В шахматном кружке занимаются 16 человек. Сколькими способами тренер может выбрать из них для предстоящего турнира команду из 4 человек?

Решение: С 16 4 = = (13∙ 14∙15 ∙16) : (1∙ 2 ∙ 3 ∙ 4) = 13 ∙ 7 ∙5∙ 4 = 91 ∙20 = 1820

774 Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта спротзала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

С 12 4 ∙ С 5 2 = ∙ = 495 ∙ 10 = 4950

Домашняя работа №768, №769, № 770, № 775

7урок Тема: « Решение задач на применение формул для подсчета числа перемещений, размещений, сочетаний»

Цель: Закрепление знаний учащихся. Формирование навыков решения простейших комбинаторных задач

1 Проверка домашнего задания

768 В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С 7 2 = = (6∙ 7) : 2 = 21

769 В магазине « Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Решение: С 8 3 = = (6 ∙ 7 ∙ 8) : (1∙ 2 ∙ 3) = 56

26

770 Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение: С 10 6 = = (7 ∙ 8 ∙ 9∙ 10) : (1∙ 2 ∙ 3 ∙ 4) = 210

775 В библиотеке читателю предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С 10 3 ∙ С 4 2 = ∙ = 120 ∙ 6 = 720

Вопросы классу

1.Что называется перестановкой из п элементов?

2.По какой формуле считают число перестановок?

3. Что называют размещением из п элементов по к?

4. По какой формуле считают число размещений из п элементов по к?

5. Что называют сочетанием из п элементов по к?

6. По какой формуле считают число сочетаний из п элементов по к?

Задачи для совместного решения

При решении каждой задачи вначале идет обсуждение: какая из трех изученных формул поможет получить ответ и почему

1. Сколько четырехзначных чисел можно составить из цифр 4,6,8,9, при условии, что все цифры разные?

2. Из 15 человек в группе студентов надо выбрать старосту и его заместителя. Сколькими способами это можно сделать?

3. Из 10 лучших учащихся школы два человека надо послать на слет лидеров.

Сколькими способами это можно сделать?

Замечание: В задаче №3 не имеет значения кого выбрать: любых 2 человек из 10, поэтому здесь работает формула для подсчета числа сочетаний.

В задаче №2 выбирают упорядоченную пару,т.к. в выбранной паре,если фамилии поменять местами это будет уже другой выбор, поэтому здесь работает формула для подсчета числа размещений

Ответы к задачам для совместного решения:

№1 24 числа. №2 210 способов. №3 45 способов

Задачи для совместного обсуждения и самостоятельных вычислений

№1Встретились 6 друзей и каждый пожал руку каждому своему другу. Сколько было рукопожатий?

27

№2 Сколькими способами можно составить расписание для учащихся 1класса на один день, если у них 7 предметов, и в этот день должно быть 4 урока?

(Число размещений из 7 по 4)

№3 В семье 6 человек, а за столом в кухне 6 стульев. Было решено каждый вечер перед ужином рассаживаться на эти 6 стульев по- новому. Сколько дней члены семьи смогут делать это без повторений.

№4 К хозяину дома пришли гости А,В,С,Д. За круглым столом – пять разных стульев. Сколько существует способов рассаживания?

(В гости пришли 4 человека + хозяин = 5 человек рассаживаются на 5 стульях, надо посчитать число перестановок)

5. В книжке раскраске нарисованы непересекающиеся треугольник, квадрат и круг. Каждую фигуру надо раскрасить в один из цветов радуги, разные фигуры в разные цвета. Сколько существует способов раскрашивания?

(Посчитайте число размещений из 7 по 3)

№6 В классе 10 мальчиков и 4 девочки. Надо выбрать 3 человека дежурными так, чтобы среди них было 2 мальчика и 1 девочка. Сколькими способами это можно сделать?

(Число сочетаний из 10 по 2 умножить на число сочетаний из 4 по 1)

Ответы для задач с самостоятельным вычислением

1 15 рукопожатий

2 840 способов

3 720дней

5 120 способов

6 180 способов

Домашнее задание №835, №841

8 урок Тема: « Самостоятельная работа»

Цель: Проверка знаний учащихся

1.Проверка домашнего задании

^ 835 Сколько четных четырехзначных чисел, в которых цифры не повторяются, можно записать с помощью цифр а) 1,2,3,7 . б) 1,2,3,4.

28

а) Наши числа должны оканчиваться четной цифрой, такая цйфра в условии одна это цифра 2 , поставим ее на последнее место, а оставшиеся 3 цифры будем переставлять, число таких перестановок равно 3! = 6 .Значит можно составить 6 четных чисел

б) рассуждаем как в примере а) поставив на последнее место цифру 2 получим 6 четных чисел, поставив на последнее место цифру 4 получим еще 6 четных чисел,

значит всего 12 четных чисел

841 Сколькими способами из класса, где учатся 24 учащихся можно выбрать: а) двух дежурных; б) старосту и его помощника?

а) т.к. дежурными могут быть любые 2 человека из 24 , то количество пар равно

С 24 2 = = 23 ∙ 24:2 = 276

б) здесь выдирают упорядоченную пару элементов из 24 элементов, количество таких пар равно А 24 2 = = 23 ∙ 24 = 552

1 вариант решает задания № 1,2,3,4,5.

2 вариант решает задания №6,7,8,9,10.

Решение простейших комбинаторных задач

(по материалам к.р. в апреле 2010 года)

1 . Сколькими способами можно расставить на полке пять книг разных авторов?

2. Сколькими способами можно составить полдник из напитка и пирожка, если в меню указаны: чай, кофе, какао и пирожки с яблоком или с вишней?

3. В среду по расписанию в 9 «А» классе должно быть 5 уроков: химия, физика, алгебра, биология и ОБЖ. Сколькими способами можно составить расписание на этот день?

4. Имеются 2 белых лошади и 4 гнедых. Сколькими способами можно

составить пару из лошадей разной масти?

5. Каким числом способов можно разложить 5 различных монет в 5 разных карманов?

29

6. В шкафу на полке лежат 3 шапки различных фасонов и 4 шарфа разных цветов. Сколькими способами можно составить набор из одной шапки и одного шарфа?

7. В финал конкурса красоты вышли 4 участницы. Сколькими способами

можно установить очередность выступления участниц финала красоты?

^ 8 .Имеются 4 утки и 3 гуся. Сколькими способами можно из них выбрать две разных птицы?

9. Сколькими способами можно разложить 5 разных писем по 5 разным

конвертам, если в каждый конверт кладется только одно письмо?

10. В коробке хранятся 5 красных и 4 зелёных шара. Сколькими способами можно составить пару из шаров разного цвета?

Ответы для заданий самостоятельной работы