Практическое применение преобразования Фурье для анализа сигналов. Введение для начинающих. Принцип преобразования и взгляды современников. Изменение положения импульса или начала отсчета

Которые уже порядком поднадоели. И я чувствую, что настал момент, когда из стратегических запасов теории пора извлечь новые консервы. Нельзя ли разложить функцию в ряд как-нибудь по-другому? Например, выразить отрезок прямой линии через синусы и косинусы? Кажется невероятным, но такие, казалось бы, далекие друг от друга функции поддаются
«воссоединению». Помимо примелькавшихся степеней в теории и практике существуют и другие подходы к разложению функции в ряд.

На данном уроке мы познакомимся с тригонометрическим рядом Фурье, коснёмся вопроса его сходимости и суммы и, конечно же, разберём многочисленные примеры на разложение функций в ряд Фурье. Искренне хотелось назвать статью «Ряды Фурье для чайников», но это было бы лукавством, поскольку для решения задач потребуются знания других разделов математического анализа и некоторый практический опыт. Поэтому преамбула будет напоминать подготовку космонавтов =)

Во-первых, к изучению материалов страницы следует подойти в отличной форме. Выспавшимися, отдохнувшими и трезвыми. Без сильных эмоций по поводу сломанной лапы хомячка и навязчивых мыслей о тяготах жизни аквариумных рыбок. Ряд Фурье не сложен с точки зрения понимания, однако практические задания требуют просто повышенной концентрации внимания – в идеале следует полностью отрешиться от внешних раздражителей. Ситуация усугубляется тем, что не существует лёгкого способа проверки решения и ответа. Таким образом, если ваше самочувствие ниже среднего, то лучше заняться чем-нибудь попроще. Правда.

Во-вторых, перед полётом в космос необходимо изучить приборную панель космического корабля. Начнём со значений функций, которые должны щёлкаться на автомате:

При любом натуральном значении :

1) . И в самом деле, синусоида «прошивает» ось абсцисс через каждое «пи»:
. В случае отрицательных значений аргумента результат, само собой, будет таким же: .

2) . А вот это знали не все. Косинус «пи эн» представляет собой эквивалент «мигалки»:

Отрицательный аргумент дела не меняет: .

Пожалуй, достаточно.

И, в-третьих, уважаемый отряд космонавтов, необходимо уметь… интегрировать .
В частности, уверенно подводить функцию под знак дифференциала , интегрировать по частям и быть в ладах с формулой Ньютона-Лейбница . Начнём важные предполётные упражнения. Категорически не рекомендую пропускать, чтобы потом не плющило в невесомости:

Пример 1

Вычислить определённые интегралы

где принимает натуральные значения.

Решение : интегрирование проводится по переменной «икс» и на данном этапе дискретная переменная «эн» считается константой. Во всех интегралах подводим функцию под знак дифференциала :

Короткая версия решения, к которой хорошо бы пристреляться, выглядит так:

Привыкаем:

Четыре оставшихся пункта самостоятельно. Постарайтесь добросовестно отнестись к заданию и оформить интегралы коротким способом. Образцы решений в конце урока.

После КАЧЕСТВЕННОГО выполнения упражнений надеваем скафандры
и готовимся к старту!

Разложение функции в ряд Фурье на промежутке

Рассмотрим некоторую функцию , которая определена по крайне мере на промежутке (а, возможно, и на бОльшем промежутке). Если данная функция интегрируема на отрезке , то её можно разложить в тригонометрический ряд Фурье :
, где – так называемые коэффициенты Фурье .

При этом число называют периодом разложения , а число – полупериодом разложения .

Очевидно, что в общем случае ряд Фурье состоит из синусов и косинусов:

Действительно, распишем его подробно:

Нулевой член ряда принято записывать в виде .

Коэффициенты Фурье рассчитываются по следующим формулам:

Прекрасно понимаю, что начинающим изучать тему пока малопонятны новые термины: период разложения , полупериод , коэффициенты Фурье и др. Без паники, это не сравнимо с волнением перед выходом в открытый космос. Во всём разберёмся в ближайшем примере, перед выполнением которого логично задаться насущными практическими вопросами:

Что нужно сделать в нижеследующих заданиях?

Разложить функцию в ряд Фурье. Дополнительно нередко требуется изобразить график функции , график суммы ряда , частичной суммы и в случае изощрённых профессорский фантазий – сделать что-нибудь ещё.

Как разложить функцию в ряд Фурье?

По существу, нужно найти коэффициенты Фурье , то есть, составить и вычислить три определённых интеграла .

Пожалуйста, перепишите общий вид ряда Фурье и три рабочие формулы к себе в тетрадь. Я очень рад, что у некоторых посетителей сайта прямо на моих глазах осуществляется детская мечта стать космонавтом =)

Пример 2

Разложить функцию в ряд Фурье на промежутке . Построить график , график суммы ряда и частичной суммы .

Решение : первая часть задания состоит в разложении функции в ряд Фурье.

Начало стандартное, обязательно записываем, что:

В данной задаче период разложения , полупериод .

Разложим функцию в ряд Фурье на промежутке :

Используя соответствующие формулы, найдём коэффициенты Фурье . Теперь нужно составить и вычислить три определённых интеграла . Для удобства я буду нумеровать пункты:

1) Первый интеграл самый простой, однако и он уже требует глаз да глаз:

2) Используем вторую формулу:

Данный интеграл хорошо знаком и берётся он по частям :

При нахождении использован метод подведения функции под знак дифференциала .

В рассматриваемом задании сподручнее сразу использовать формулу интегрирования по частям в определённом интеграле :

Пара технических замечаний. Во-первых, после применения формулы всё выражение нужно заключить в большие скобки , так как перед исходным интегралом находится константа . Не теряем её ! Скобки можно раскрыть на любом дальнейшем шаге, я это сделал в самую последнюю очередь. В первом «куске» проявляем крайнюю аккуратность в подстановке, как видите, константа не при делах, и пределы интегрирования подставляются в произведение . Данное действие выделено квадратными скобками. Ну а интеграл второго «куска» формулы вам хорошо знаком из тренировочного задания;-)

И самое главное – предельная концентрация внимания!

3) Ищем третий коэффициент Фурье:

Получен родственник предыдущего интеграла, который тоже интегрируется по частям :

Этот экземпляр чуть сложнее, закомментирую дальнейшие действия пошагово:

(1) Выражение полностью заключаем в большие скобки . Не хотел показаться занудой, слишком уж часто теряют константу .

(2) В данном случае я немедленно раскрыл эти большие скобки. Особое внимание уделяем первому «куску»: константа курит в сторонке и не участвует в подстановке пределов интегрирования ( и ) в произведение . Ввиду загромождённости записи это действие снова целесообразно выделить квадратными скобками. Со вторым «куском» всё проще: здесь дробь появилась после раскрытия больших скобок, а константа – в результате интегрирования знакомого интеграла;-)

(3) В квадратных скобках проводим преобразования , а в правом интеграле – подстановку пределов интегрирования.

(4) Выносим «мигалку» из квадратных скобок: , после чего раскрываем внутренние скобки: .

(5) Сокращаем 1 и –1 в скобках, проводим окончательные упрощения.

Наконец-то найдены все три коэффициента Фурье:

Подставим их в формулу :

При этом не забываем разделить пополам. На последнем шаге константа («минус два»), не зависящая от «эн», вынесена за пределы суммы.

Таким образом, мы получили разложение функции в ряд Фурье на промежутке :

Изучим вопрос сходимости ряда Фурье. Я объясню теорию, в частности теорему Дирихле , буквально «на пальцах», поэтому если вам необходимы строгие формулировки, пожалуйста, обратитесь к учебнику по математическому анализу (например, 2-й том Бохана; или 3-й том Фихтенгольца, но в нём труднее) .

Во второй части задачи требуется изобразить график , график суммы ряда и график частичной суммы .

График функции представляет собой обычную прямую на плоскости , которая проведена чёрным пунктиром:

Разбираемся с суммой ряда . Как вы знаете, функциональные ряды сходятся к функциям. В нашем случае построенный ряд Фурье при любом значении «икс» сойдётся к функции , которая изображена красным цветом. Данная функция терпит разрывы 1-го рода в точках , но определена и в них (красные точки на чертеже)

Таким образом: . Легко видеть, что заметно отличается от исходной функции , именно поэтому в записи ставится значок «тильда», а не знак равенства.

Изучим алгоритм, по которому удобно строить сумму ряда.

На центральном интервале ряд Фурье сходится к самой функции (центральный красный отрезок совпадает с чёрным пунктиром линейной функции).

Теперь немного порассуждаем о природе рассматриваемого тригонометрического разложения. В ряд Фурье входят только периодические функции (константа, синусы и косинусы), поэтому сумма ряда тоже представляет собой периодическую функцию .

Что это значит в нашем конкретном примере? А это обозначает то, что сумма ряда непременно периодична и красный отрезок интервала обязан бесконечно повторяться слева и справа.

Думаю, сейчас окончательно прояснился смысл фразы «период разложения ». Упрощённо говоря, через каждые ситуация вновь и вновь повторяется.

На практике обычно достаточно изобразить три периода разложения, как это сделано на чертеже. Ну и ещё «обрубки» соседних периодов – чтобы было понятно, что график продолжается.

Особый интерес представляют точки разрыва 1-го рода . В таких точках ряд Фурье сходится к изолированным значениям, которые расположены ровнёхонько посередине «скачка» разрыва (красные точки на чертеже). Как узнать ординату этих точек? Сначала найдём ординату «верхнего этажа»: для этого вычислим значение функции в крайней правой точке центрального периода разложения: . Чтобы вычислить ординату «нижнего этажа» проще всего взять крайнее левое значение этого же периода: . Ордината среднего значения – это среднее арифметическое суммы «верха и низа»: . Приятным является тот факт, что при построении чертежа вы сразу увидите, правильно или неправильно вычислена середина.

Построим частичную сумму ряда и заодно повторим смысл термина «сходимость». Мотив известен ещё из урока о сумме числового ряда . Распишем наше богатство подробно:

Чтобы составить частичную сумму необходимо записать нулевой + ещё два члена ряда. То есть,

На чертеже график функции изображен зелёным цветом, и, как видите, он достаточно плотно «обвивает» полную сумму . Если рассмотреть частичную сумму из пяти членов ряда , то график этой функции будет ещё точнее приближать красные линии, если сто членов – то «зелёный змий» фактически полностью сольётся с красными отрезками и т.д. Таким образом, ряд Фурье сходится к своей сумме .

Интересно отметить, что любая частичная сумма – это непрерывная функция , однако полная сумма ряда всё же разрывна.

На практике не так уж редко требуется построить и график частичной суммы. Как это сделать? В нашем случае необходимо рассмотреть функцию на отрезке , вычислить её значения на концах отрезка и в промежуточных точках (чем больше точек рассмотрите – тем точнее будет график). Затем следует отметить данные точки на чертеже и аккуратно изобразить график на периоде , после чего «растиражировать» его на соседние промежутки. А как иначе? Ведь приближение – это тоже периодическая функция… …чем-то мне её график напоминает ровный ритм сердца на дисплее медицинского прибора.

Выполнять построение, конечно, не сильно удобно, так как и приходится проявлять сверхаккуратность, выдерживая точность не меньше, чем до половины миллиметра. Впрочем, читателей, которые не в ладах с черчением, обрадую – в «реальной» задаче выполнять чертёж нужно далеко не всегда, где-то в 50% случаев требуется разложить функцию в ряд Фурье и всё.

После выполнения чертежа завершаем задание:

Ответ :

Во многих задачах функция терпит разрыв 1-го рода прямо на периоде разложения:

Пример 3

Разложить в ряд Фурье функцию , заданную на отрезке . Начертить график функции и полной суммы ряда.

Предложенная функция задана кусочным образом (причём, заметьте, только на отрезке ) и терпит разрыв 1-го рода в точке . Можно ли вычислить коэффициенты Фурье? Без проблем. И левая и правая части функции интегрируемы на своих промежутках, поэтому интегралы в каждой из трёх формул следует представить в виде суммы двух интегралов. Посмотрим, например, как это делается у нулевого коэффициента:

Второй интеграл оказался равным нулю, что убавило работы, но так бывает далеко не всегда.

Аналогично расписываются два других коэффициента Фурье.

Как изобразить сумму ряда? На левом интервале чертим отрезок прямой , а на интервале – отрезок прямой (жирно-жирно выделяем участок оси ). То есть, на промежутке разложения сумма ряда совпадает с функцией везде, кроме трёх «нехороших» точек. В точке разрыва функции ряд Фурье сойдётся к изолированному значению, которое располагается ровно посередине «скачка» разрыва. Его нетрудно увидеть и устно: левосторонний предел: , правосторонний предел: и, очевидно, что ордината средней точки равна 0,5.

В силу периодичности суммы , картинку необходимо «размножить» на соседние периоды, в частности изобразить то же самое на интервалах и . При этом, в точках ряд Фурье сойдётся к срединным значениям.

По сути-то ничего нового здесь нет.

Постарайтесь самостоятельно справиться с данной задачей. Примерный образец чистового оформления и чертёж в конце урока.

Разложение функции в ряд Фурье на произвольном периоде

Для произвольного периода разложения , где «эль» – любое положительное число, формулы ряда Фурье и коэффициентов Фурье отличаются немного усложнённым аргументом синуса и косинуса:

Если , то получаются формулы промежутка , с которых мы начинали.

Алгоритм и принципы решения задачи полностью сохраняются, но возрастает техническая сложность вычислений:

Пример 4

Разложить функцию в ряд Фурье и построить график суммы.

Решение : фактически аналог Примера №3 с разрывом 1-го рода в точке . В данной задаче период разложения , полупериод . Функция определена только на полуинтервале , но это не меняет дела – важно, что оба куска функции интегрируемы.

Разложим функцию в ряд Фурье:

Поскольку функция разрывна в начале координат, то каждый коэффициент Фурье очевидным образом следует записать в виде суммы двух интегралов:

1) Первый интеграл распишу максимально подробно:

2) Тщательным образом вглядываемся в поверхность Луны:

Второй интеграл берём по частям :

На что следует обратить пристальное внимание, после того, как мы звёздочкой открываем продолжение решения?

Во-первых, не теряем первый интеграл , где сразу же выполняем подведение под знак дифференциала . Во-вторых, не забываем злополучную константу перед большими скобками и не путаемся в знаках при использовании формулы . Большие скобки, всё-таки удобнее раскрывать сразу же на следующем шаге.

Остальное дело техники, затруднения может вызвать только недостаточный опыт решенияинтегралов.

Да, не зря именитые коллеги французского математика Фурье возмущались – как это тот посмел раскладывать функции в тригонометрические ряды?! =) К слову, наверное, всем интересен практический смысл рассматриваемого задания. Сам Фурье работал над математической моделью теплопроводности, а впоследствии ряд, названный его именем стал применяться для исследования многих периодических процессов, коих в окружающем мире видимо-невидимо. Сейчас, кстати, поймал себя на мысли, что не случайно сравнил график второго примера с периодическим ритмом сердца. Желающие могут ознакомиться с практическим применением преобразования Фурье в сторонних источниках. …Хотя лучше не надо – будет вспоминаться, как Первая Любовь =)

3) Учитывая неоднократно упоминавшиеся слабые звенья, разбираемся с третьим коэффициентом:

Интегрируем по частям:

Подставим найдённые коэффициенты Фурье в формулу , не забывая поделить нулевой коэффициент пополам:

Построим график суммы ряда. Кратко повторим порядок действий: на интервале строим прямую , а на интервале – прямую . При нулевом значении «икс» ставим точку посередине «скачка» разрыва и «тиражируем» график на соседние периоды:


На «стыках» периодов сумма также будет равна серединам «скачка» разрыва .

Готово. Напоминаю, что сама функция по условию определена только на полуинтервале и, очевидно, совпадает с суммой ряда на интервалах

Ответ :

Иногда кусочно-заданная функция бывает и непрерывна на периоде разложения. Простейший образец: . Решение (см. 2-й том Бохана) такое же, как и двух предыдущих примерах: несмотря на непрерывность функции в точке , каждый коэффициент Фурье выражается суммой двух интегралов.

На промежутке разложения точек разрыва 1-го рода и/или точек «стыка» графика может быть и больше (две, три и вообще любое конечное количество). Если функция интегрируема на каждой части, то она также разложима в ряд Фурье. Но из практического опыта такую жесть что-то не припоминаю. Тем не менее, встречаются более трудные задания, чем только что рассмотренное, и в конце статьи для всех желающих есть ссылки на ряды Фурье повышенной сложности.

А пока расслабимся, откинувшись в креслах и созерцая бескрайние звёздные просторы:

Пример 5

Разложить функцию в ряд Фурье на промежутке и построить график суммы ряда.

В данной задаче функция непрерывна на полуинтервале разложения, что упрощает решение. Всё очень похоже на Пример №2. С космического корабля никуда не деться – придётся решать =) Примерный образец оформления в конце урока, график прилагается.

Разложение в ряд Фурье чётных и нечётных функций

С чётными и нечётными функциями процесс решения задачи заметно упрощается. И вот почему. Вернёмся к разложению функции в ряд Фурье на периоде «два пи» и произвольном периоде «два эль» .

Предположим, что наша функция чётна. Общий же член ряда, как вы видите, содержит чётные косинусы и нечётные синусы. А если мы раскладываем ЧЁТНУЮ функцию, то зачем нам нечётные синусы?! Давайте обнулим ненужный коэффициент: .

Таким образом, чётная функция раскладывается в ряд Фурье только по косинусам :

Поскольку интегралы от чётных функций по симметричному относительно нуля отрезку интегрирования можно удваивать, то упрощаются и остальные коэффициенты Фурье.

Для промежутка :

Для произвольного промежутка:

К хрестоматийным примерам, которые есть практически в любом учебнике по матанализу, относятся разложения чётных функций . Кроме того, они неоднократно встречались и в моей личной практике:

Пример 6

Дана функция . Требуется:

1) разложить функцию в ряд Фурье с периодом , где – произвольное положительное число;

2) записать разложение на промежутке , построить функцию и график полной суммы ряда .

Решение : в первом пункте предлагается решить задачу в общем виде, и это очень удобно! Появится надобность – просто подставьте своё значение.

1) В данной задаче период разложения , полупериод . В ходе дальнейших действий, в частности при интегрировании, «эль» считается константой

Функция является чётной, а значит, раскладывается в ряд Фурье только по косинусам: .

Коэффициенты Фурье ищем по формулам . Обратите внимание на их безусловные преимущества. Во-первых, интегрирование проводится по положительному отрезку разложения, а значит, мы благополучно избавляемся от модуля , рассматривая из двух кусков только «икс». И, во-вторых, заметно упрощается интегрирование.

Два:

Интегрируем по частям:

Таким образом:
, при этом константу , которая не зависит от «эн», выносим за пределы суммы.

Ответ :

2) Запишем разложение на промежутке , для этого в общую формулу подставляем нужное значение полупериода :

Этот ряд может быть также записан в виде:

(2),
где , k-я комплексная амплитуда.

Связь между коэффициентами (1) и (3) выражается следующими формулами:

Отметим, что все эти три представления ряда Фурье совершенно равнозначны. Иногда при работе с рядами Фурье бывает удобнее использовать вместо синусов и косинусов экспоненты мнимого аргумента, то есть использовать преобразование Фурье в комплексной форме. Но нам удобно использовать формулу (1), где ряд Фурье представлен в виде суммы косинусоид с соответствующими амплитудами и фазами. В любом случае неправильно говорить, что результатом преобразования Фурье действительного сигнала будут комплексные амплитуды гармоник. Как правильно говорится в Вики «Преобразование Фурье (?) - операция, сопоставляющая одной функции вещественной переменной другую функцию, также вещественной переменной.»

Итого:
Математической основой спектрального анализа сигналов является преобразование Фурье.

Преобразование Фурье позволяет представить непрерывную функцию f(x) (сигнал), определенную на отрезке {0, T} в виде суммы бесконечного числа (бесконечного ряда) тригонометрических функций (синусоид и\или косинусоид) с определёнными амплитудами и фазами, также рассматриваемых на отрезке {0, T}. Такой ряд называется рядом Фурье.

Отметим еще некоторые моменты, понимание которых требуется для правильного применения преобразования Фурье к анализу сигналов. Если рассмотреть ряд Фурье (сумму синусоид) на всей оси Х, то можно увидеть, что вне отрезка {0, T} функция представленная рядом Фурье будет будет периодически повторять нашу функцию.

Например, на графике рис.7 исходная функция определена на отрезке {-T\2, +T\2}, а ряд Фурье представляет периодическую функцию, определенную на всей оси х.

Это происходит потому, что синусоиды сами являются периодическими функциями, соответственно и их сумма будет периодической функцией.


рис.7 Представление непериодической исходной функции рядом Фурье

Таким образом:

Наша исходная функция - непрерывная, непериодическая, определена на некотором отрезке длиной T.
Спектр этой функции - дискретный, то есть представлен в виде бесконечного ряда гармонических составляющих - ряда Фурье.
По факту, рядом Фурье определяется некоторая периодическая функция, совпадающая с нашей на отрезке {0, T}, но для нас эта периодичность не существенна.

Периоды гармонических составляющих кратны величине отрезка {0, T}, на котором определена исходная функция f(x). Другими словами, периоды гармоник кратны длительности измерения сигнала. Например, период первой гармоники ряда Фурье равен интервалу Т, на котором определена функция f(x). Период второй гармоники ряда Фурье равен интервалу Т/2. И так далее (см. рис. 8).


рис.8 Периоды (частоты) гармонических составляющих ряда Фурье (здесь Т=2?)

Соответственно, частоты гармонических составляющих кратны величине 1/Т. То есть частоты гармонических составляющих Fk равны Fk= к\Т, где к пробегает значения от 0 до?, например к=0 F0=0; к=1 F1=1\T; к=2 F2=2\T; к=3 F3=3\T;… Fk= к\Т (при нулевой частоте - постоянная составляющая).

Пусть наша исходная функция, представляет собой сигнал, записанный в течение Т=1 сек. Тогда период первой гармоники будет равен длительности нашего сигнала Т1=Т=1 сек и частота гармоники равна 1 Гц. Период второй гармоники будет равен длительности сигнала, деленной на 2 (Т2=Т/2=0,5 сек) и частота равна 2 Гц. Для третьей гармоники Т3=Т/3 сек и частота равна 3 Гц. И так далее.

Шаг между гармониками в этом случае равен 1 Гц.

Таким образом сигнал длительностью 1 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 1 Гц.
Чтобы увеличить разрешение в 2 раза до 0,5 Гц - надо увеличить длительность измерения в 2 раза - до 2 сек. Сигнал длительностью 10 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 0,1 Гц. Других способов увеличить разрешение по частоте нет.

Существует способ искусственного увеличения длительности сигнала путем добавления нулей к массиву отсчетов. Но реальную разрешающую способность по частоте он не увеличивает.

3. Дискретные сигналы и дискретное преобразование Фурье

С развитием цифровой техники изменились и способы хранения данных измерений (сигналов). Если раньше сигнал мог записываться на магнитофон и храниться на ленте в аналоговом виде, то сейчас сигналы оцифровываются и хранятся в файлах в памяти компьютера в виде набора чисел (отсчетов).

Обычная схема измерения и оцифровки сигнала выглядит следующим образом.


рис.9 Схема измерительного канала

Сигнал с измерительного преобразователя поступает на АЦП в течение периода времени Т. Полученные за время Т отсчеты сигнала (выборка) передаются в компьютер и сохраняются в памяти.


рис.10 Оцифрованный сигнал - N отсчетов полученных за время Т

Какие требования выдвигаются к параметрам оцифровки сигнала? Устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал) называется аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) (Wiki).

Одним из основных параметров АЦП является максимальная частота дискретизации (или частота семплирования, англ. sample rate) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации. Измеряется в герцах. ((Wiki))

Согласно теореме Котельникова, если непрерывный сигнал имеет спектр, ограниченный частотой Fмакс, то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым через интервалы времени , т.е. с частотой Fd ? 2*Fмакс, где Fd - частота дискретизации; Fмакс - максимальная частота спектра сигнала. Другими слова частота оцифровки сигнала (частота дискретизации АЦП) должна как минимум в 2 раза превышать максимальную частоту сигнала, который мы хотим измерить.

А что будет, если мы будем брать отсчеты с меньшей частотой, чем требуется по теореме Котельникова?

В этом случае возникает эффект «алиасинга» (он же стробоскопический эффект, муаровый эффект), при котором сигнал высокой частоты после оцифровки превращается в сигнал низкой частоты, которого на самом деле не существует. На рис. 5 красная синусоида высокой частоты - это реальный сигнал. Синяя синусоида более низкой частоты - фиктивный сигнал, возникающий вследствие того, за время взятия отсчета успевает пройти больше, чем пол-периода высокочастотного сигнала.


Рис. 11. Появление ложного сигнала низкой частоты при недостаточно высокой частоте дискретизации

Чтобы избежать эффекта алиасинга перед АЦП ставят специальный антиалиасинговый фильтр - ФНЧ (фильтр нижних частот), который пропускает частоты ниже половины частоты дискретизации АЦП, а более высокие частоты зарезает.

Для того, чтобы вычислить спектр сигнала по его дискретным отсчетам используется дискретное преобразование Фурье (ДПФ). Отметим еще раз, что спектр дискретного сигнала «по определению» ограничен частотой Fмакс, меньшей половине частоты дискретизации Fd. Поэтому спектр дискретного сигнала может быть представлен суммой конечного числа гармоник, в отличие от бесконечной суммы для ряда Фурье непрерывного сигнала, спектр которого может быть неограничен. Согласно теореме Котельникова максимальная частота гармоники должна быть такой, чтобы на нее приходилось как минимум два отсчета, поэтому число гармоник равно половине числа отсчетов дискретного сигнала. То есть если в выборке имется N отсчетов, то число гармоник в спектре будет равно N/2.

Рассмотрим теперь дискретное преобразование Фурье (ДПФ).

Сравнивая с рядом Фурье

Видим, что они совпадают, за исключением того, что время в ДПФ имеет дискретный характер и число гармоник ограничено величиной N/2 - половиной числа отсчетов.

Формулы ДПФ записываются в безразмерных целых переменных k, s, где k – номера отсчетов сигнала, s – номера спектральных составляющих.
Величина s показывает количество полных колебаний гармоники на периоде Т (длительности измерения сигнала). Дискретное преобразование Фурье используется для нахождения амплитуд и фаз гармоник численным методом, т.е. «на компьютере»

Возвращаясь к результатам, полученным в начале. Как уже было сказано выше, при разложении в ряд Фурье непериодической функции (нашего сигнала), полученный ряд Фурье фактически соответствует периодической функции с периодом Т. (рис.12).


рис.12 Периодическая функция f(x) с периодом Т0, с периодом измерения Т>T0

Как видно на рис.12 функция f(x) периодическая с периодом Т0. Однако из-за того, что длительность измерительной выборки Т не совпадает с периодом функции Т0, функция, получаемая как ряд Фурье, имеет разрыв в точке Т. В результате спектр данной функции будет содержать большое количество высокочастотных гармоник. Если бы длительность измерительной выборки Т совпадала с периодом функции Т0, то в полученном после преобразования Фурье спектре присутствовала бы только первая гармоника (синусоида с периодом равным длительности выборки), поскольку функция f(x) представляет собой синусоиду.

Другими словами, программа ДПФ «не знает», что наш сигнал представляет собой «кусок синусоиды», а пытается представить в виде ряда периодическую функцию, которая имеет разрыв из-за нестыковки отдельных кусков синусоиды.

В результате в спектре появляются гармоники, которые должны в сумме изобразить форму функции, включая этот разрыв.

Таким образом, чтобы получить «правильный» спектр сигнала, являющегося суммой нескольких синусоид с разными периодами, необходимо чтобы на периоде измерения сигнала укладывалось целое число периодов каждой синусоиды. На практике это условие можно выполнить при достаточно большой длительности измерения сигнала.


Рис.13 Пример функции и спектра сигнала кинематической погрешности редуктора

При меньшей длительности картина будет выглядеть «хуже»:


Рис.14 Пример функции и спектра сигнала вибрации ротора

На практике бывает сложно понять, где «реальные составляющие», а где «артефакты», вызванные некратностью периодов составляющих и длительности выборки сигнала или «скачками и разрывами» формы сигнала. Конечно слова «реальные составляющие» и «артефакты» не зря взяты в кавычки. Наличие на графике спектра множества гармоник не означает, что наш сигнал в реальности из них «состоит». Это все равно что считать, будто число 7 «состоит» из чисел 3 и 4. Число 7 можно представить в виде суммы чисел 3 и 4 - это правильно.

Так и наш сигнал… а вернее даже не «наш сигнал», а периодическую функцию, составленную путем повторения нашего сигнала (выборки) можно представить в виде суммы гармоник (синусоид) с определенными амплитудами и фазами. Но во многих важных для практики случаях (см. рисунки выше) действительно можно связать полученные в спектре гармоники и с реальными процессами, имеющими циклический характер и вносящими значительный вклад в форму сигнала.

Некоторые итоги

1. Реальный измеренный сигнал, длительностью T сек, оцифрованный АЦП, то есть представленный набором дискретных отсчетов (N штук), имеет дискретный непериодический спектр, представленный набором гармоник (N/2 штук).

2. Сигнал представлен набором действительных значений и его спектр представлен набором действительных значений. Частоты гармоник положительны. То, что математикам бывает удобнее представить спектр в комплексной форме с использованием отрицательных частот не значит, что «так правильно» и «так всегда надо делать».

3. Сигнал, измеренный на отрезке времени Т определен только на отрезке времени Т. Что было до того, как мы начали измерять сигнал, и что будет после того - науке это неизвестно. И в нашем случае - неинтересно. ДПФ ограниченного во времени сигнала дает его «настоящий» спектр, в том смысле, что при определенных условиях позволяет вычислить амплитуду и частоту его составляющих.

Использованные материалы и другие полезные материалы.

ПРИМЕНЕНИЕ РЯДОВ ФУРЬЕ ДЛЯ ПРОГНОЗИРОВАНИЯ И ОПТИМИЗАЦИИ ПОСТАВОК ПРЕДПРИЯТИЯ ОПТОВОЙ ТОРГОВЛИ В АСПЕКТЕ УПРАВЛЕНИЯ СОБСТВЕННЫМ И АРЕНДУЕМЫМ ТРАНСПОРТОМ

Горлач Борис Алексеевич 1 , Шигаева Наталья Валерьевна 2
1 Самарский государственный аэрокосмический университет имени академика С.П. Королева (НИУ), д.т.н, профессор
2 Самарский государственный аэрокосмический университет имени академика С.П. Королева (НИУ)


Аннотация
В работе рассмотрен механизм моделирования случайного процесса (для статистических данных о предприятии) с использованием аппарата гармонического анализа. Решена задача рационального распределения объемов поставок сырья между собственным и арендуемым транспортом с целью сокращения затрат на хранение продукции.

THE FOURIER SERIES APPLICATION FOR PREDICTION AND OPTIMIZATION OF DELIVERY COSTS

Gorlach Boris Alekseevich 1 , Shigaeva Nathalie Valerievna 2
1 Samara State Aerospace University, doctor of technical Sciences, Professor
2 Samara State Aerospace University


Abstract
Тhe mechanism of simulation of a random process is considered (for the enterprise data). Harmonic analysis is widely adopted in modeling of enterprise costs. The problem of rational distribution of the raw materials deliveries between own transport and rented transport is solved.

Библиографическая ссылка на статью:
Горлач Б.А., Шигаева Н.В. Применение рядов фурье для прогнозирования и оптимизации поставок предприятия оптовой торговли в аспекте управления собственным и арендуемым транспортом // Экономика и менеджмент инновационных технологий. 2014. № 7 [Электронный ресурс]..02.2019).

Введение. Издержки предприятия на создание системы хранения товаров создают необходимость рационального распределения поставок. Решение задачи управления поставками связано с изменением потребностей предприятия в сырье. Для разработки модели рационального распределения проделана обработка статистических данных предприятия о спросе на сырье.

Статья состоит из следующих частей: построение модели случайного процесса, оптимизация поставок на примере упрощенной модели и на примере реальных данных.

Часть первая. Построение математической модели случайного процесса.

В ретроспективном периоде статистические данные о хранении ресурса на складе выглядят следующим образом (Таблица 1). Предполагается, что задана совокупность статистических данных Y i =Y(t i) в виде временного ряда.

Таблица 1 – Статистические данные спроса на ресурс

Как правило, математические модели временных рядов экономических процессов представляются в виде совокупности 4 компонент: сезонной S, циклической C, случайной ξ и тренда U. Данные компоненты образуют аддитивную модель статистических данных .

Составляющая U – тренд – подбирается таким образом, чтобы она не противоречила основной тенденции изменения исследуемой функции и не затрудняла ее анализ . В данной работе подбор тренда осуществляется с помощью функций Excel, а также вручную методом «нормальных уравнений».

После выполнения процедуры подбора наиболее адекватного тренда, выполняется нормализация функции, позволяющая обеспечить моделирование колебательной составляющей. В данном исследовании колебательная составляющая подбирается с использованием модели, представляющей собой тригонометрический ряд Фурье:

.

Коэффициенты ряда Фурье определяются следующим образом:



После проведения поиска в 6 итераций с помощью средств Excel была выявлена следующая функция колебательной составляющей:

S(t) = -0.215sinπt/6 – 0.077cos πt/6 -0.085sin πt/3-0.013cos πt/3+0.001 sin πt/2+0.023cosπt/2-0.035 sin2πt/3+0.055cos 2πt/3+0.003 sin 5πt/6+0.054cos 5πt/6+0.056cos πt

Динамика поставок и хранения ресурса на складе, а также функциональная зависимость объема ресурса после осуществления нормализации представлены на рисунке 1.

Рисунок 1 – Колебательная составляющая для реальных данных

Вычислим коэффициент детерминации для полученной функции.

Коэффициент детерминации для полученной функции равен 0,75. Следовательно, тренд описывает статистические данные на 75 процентов, а вероятность несоответствия полученной функции реальным статистическим значениям равна 0,25.

Часть вторая. Оптимизация процесса поставок

При составлении пропорции в поставках сырья следует учитывать несколько факторов, влияющих на показатель экономической эффективности поставок:

    Своевременность и частота поставок

    Стоимость поставок

    Допустимые сроки хранения сырья

    Обеспеченность предприятия складскими помещениями

    Другие факторы .

Рассмотрим процесс оптимизации поставок на упрощенном графике. Выделим в нормализованном тренде одну гармонику (одно слагаемое гармонического ряда) и ограничимся рассмотрением одного периода. Получится следующая упрощенная функция поставок:

Рассмотрим в данной работе три варианта поставок.

1. Поставки обеспечиваются только собственным транспортом на уровне y=1, которому соответствует значение s(t)=0.

Процесс накопления ресурсов в первом полугодии и расхода во втором полугодии определяется формулой интеграла функции на рассматриваемом участке.

Накопленные ресурсы полностью расходуются в следующем полугодии. Проблема состоит в том, что объем хранения на складе имеет слишком большой разброс во времени и нуждается в оптимизации.

2. Собственный транспорт обеспечивает поставки, соответствующие минимальной интенсивности расходования ресурсов. Этот вариант подходит фирме, если предприятие имеет меньше капитала и в силу других причин не может позволить себе транспорта больше, чем минимальный уровень потребности в ресурсах, выглядит это следующим образом. Предприятие недополучает ресурсы в размере, равном площади интеграла между s(t) и прямой, характеризующей минимальный уровень поставок.

Предположим, что предприятие решило арендовать транспорт на уровне максимальной потребности в ресурсах в первом полугодии, тогда накопления полностью расходуются во втором полугодии.

3. Собственный транспорт обеспечивает поставки на уровне -h. Недостаток ресурсов компенсируется арендой транспорта.

Вычисляем уровень поставок h из условия равенства площадей накопления и расхода :

При полученном значении h недостаток ресурсов без аренды выглядит следующим образом:

Обобщая полученные результаты, составлен общий график накопления/расхода, который показывает, насколько оптимальный план отличается минимальным количеством складских ресурсов (Рисунок 2).

Рисунок 2 – Минимизация складских ресурсов

Исходя из графика, привлечение арендованного транспорта при осуществлении оптимизации хранения на складе позволяет сократить удельный объем хранения на складе до 10 раз, так как амплитуда значений функции накопления уменьшилась с 10 единиц до 1.

Часть 3. Оптимизация поставок на примере реальных данных

Выполнение оптимизации поставок начинается с выделения периода колебательной составляющей (в нашем примере t i ϵ 11..23) и поиска точек пересечения функции s(t) с осью Ox.

Иллюстрация варианта динамики поступления и расхода ресурса на предприятии, в котором транспортная аренда не предусмотрена, представлена на рисунке 3.

Рисунок 3 – Накопление/расход для реальных данных без аренды

Функция колебательной составляющей выглядит следующим образом:

S(t) = -0.215 sin πt/6-0.077cos πt/6 -0.085 sin πt/3-0.013cos πt/3+0.001 sin πt/2+0.023cos πt/2-0.035 sin 2πt/3+0.055cos 2πt/3+0.003 sin 5πt/6+0.054cos 5πt/6+0.056cos πt

Функция накопления:

Q = ∫S = (1/π)(0.215 *6* cos (πt/6)-0.077*6*sin (πt/6) +0.085*3*cos πt/3 – 0.013*3*sin πt/3 – 0.0013*2*cos πt/2+(0.023*2*sin πt/2+0.0349*6/4 cos 2πt/3+(0.0552*6/4)sin 2πt/3 – (0.0032*6/5) cos 5πt/6 + (0.0538*6/5)sin 5πt/6 + (0.0559*sin π t)

Определим максимальные площади запаса и расхода для функции поставок, при условии равенства нулю интенсивности поставок s(t).

Таблица 2 – Определение площадей запаса и расхода ресурса

Таким образом, Q max =0,9078 – это максимально возможное количество хранимых на складе ресурсов. Ресурсы, накопленные в первом полугодии, полностью расходуются во втором, т.к. тригонометрические функции имеют свойство симметричности.

Оптимизация с привлечением арендованного транспорта – эффективный способ снижения издержек на хранение ресурса на складе. Уровень поставок предприятия собственным транспортом задается величиной Y(t)=1-h , либо S(t)=-h из условия равенства площадей накопления и расхода по полугодиям (рисунок 4).

Рисунок 4 – Определение уровня поставок арендованным транспортом

В этом случае останется потребность в ресурсе в объеме, определяемом площадью прямоугольника с высотой h и основанием, составляющим весь интервал рассмотрения, равного (из свойств симметричности) площади интеграла циклической составляющей над прямой уровня поставок собственным транспортом. Предприятие арендует транспорт на части рассмотренного интервала . Уровень поставок арендуемым транспортом определится из равенства площадей недостатка ресурса (2) и объема аренды (1), изображенных на рисунке 4.

Поиск уровней h осуществляется итерационно. В варианте привлечения арендованных транспортных средств максимальный уровень хранения запасов на складе равен:

Верхний уровень h* находим из условия равенства площадей невосполненного спроса (1) на ресурсы и объема поставок (2), обозначенных на рисунке 4. Уровень аренды определен значением h*=0,144.

После проведения оптимизации была найдена площадь расхода и запаса:

Итоговая площадь запасов сократилась с 0,9 до 0,5:

Q max2 =0,2016+ 0,3137=0,515

Таким образом, оптимизация процесса поставок с помощью арендуемого транспорта дала сокращение складских расходов на 44%, что указывает на успешное выполнение задачи оптимизации.

Результаты и выводы . Предложенный алгоритм рационального распределения поставок между собственным транспортом предприятия и арендуемым в ходе моделирования функции издержек рядом Фурье опирается на характерные особенности нормализованного графика тренда, учитывает ограничения складских площадей, сроки хранения сырья, обеспечивает сокращение складских расходов (уровня хранения ресурсов на складе) до 50% раз для рассмотренных данных функции поставок. Таким образом, привлечение арендованного транспорта является эффективным способом сокращения складских расходов и издержек на хранение при высокой стоимости аренды и содержания складских помещений.


Библиографический список

  1. Савельев Г.Л. Задача оптимизации ресурсов предприятия в условиях циклического изменения потребности. – Самара: СГАУ, 2010. – 30 стр.
  2. Чуйкова Ю.С. Оптимизация материального потока в задаче управления запасами предприятия /Сборник научных статей «Управление организационно-экономическими системами». – Самара: СГАУ, 2009. – с. 25-30.
  3. Rardin R.L. Optimization in Operations Research. Prentice Hall, 1998.
Количество просмотров публикации: Please wait 1

Возможности приближения рядов Фурье в случае линейного сигнала бывает необходимым для построения функций в случае разрывных периодических элементов. Возможности использования данного метода для построения и разложения их с использованием конечных сумм ряда Фурье использующих при решении многих задач различных наук, таких как физики, сейсмологии и так далее. Процессы океанских приливов, солнечной активности рассматриваются способом разложения колебательных процессов, функций описываемых эти преобразования. С развитием компьютерных технологий ряды Фурье стали применяться для более и более сложных задач, а так же благодаря этому стало возможным использование данных преобразований в косвенных науках, таких как медицина, химия. Преобразование Фурье описывается как в действительной, так и в комплексной форме, второе распределение дало возможность произвести прорыв в исследовании космического пространства. Результатом данной работы является применение рядов Фурье к линеаризации разрывной функции и подбором количества коэффициентов ряда для более точного наложения ряда на функцию. Причем, при использовании разложения в ряд Фурье, данная функция перестает быть разрывной и уже при достаточно малых, осуществляется хорошее приближение используемой функции.

ряд фурье

преобразование фурье

фазовый спектр.

1. Алашеева Е.А., Рогова Н.В. Численный метод решения задачи электродинамики в тонкопроволочном приближении. Наука и мир. Международный научный журнал, № 8(12), 2014. Том 1. г. Волгоград. С.17-19.

2. Воробьев Н.Н. Теория рядов. Изд. Наука, Главная редакция физико-математической литературы, М., 1979, -408 С.

3. Калинина В.Н., Панкин В.Ф. Математическая статистика. - М.: Высшая школа, 2001.

4. Р.Эдвардс Ряды Фурье в современном изложении. Изд. Мир. В 2 томах. Том 1. 1985 год. 362 стр.

5. Сигорский В.П. Математический аппарат инженера. Изд. 2-е стереотипное. «Технiка»,1997. – 768 с.

Представление произвольно взятой функции с конкретным периодом в виде ряда называется рядом Фурье. Разложением по ортогональному базису называют данное решение в общем виде. Разложение функций в ряд Фурье является довольно мощным инструментом при решении разнообразных задач. Т.к. хорошо известны и изучены свойства данного преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке . Человек, не знакомый с высшей математикой, а также с трудами французского ученого Фурье, скорее всего, не поймет, что это за «ряды» и для чего они нужны. Данное преобразование Фурье очень плотно вошло в нашу жизнь. Им пользуются не только математики, но и физики, химики, медики, астрономы, сейсмологи, океанографы и многие другие.

Ряды Фурье используются при решении многих прикладных задач. Преобразование Фурье можно проводить аналитическими, числительными и другими методами. Такие процессы как океанские приливы и световые волны до циклов солнечной активности относятся к числительному способу разложения любых колебательных процессов в ряд Фурье. Используя эти математические приемы, можно разбирать функции, представляя любые колебательные процессы в качестве ряда синусоидальных составляющих, которые переходят от минимума к максимуму и обратно. Преобразование Фурье является функцией, описывающей фазу и амплитуду синусоид, соответствующих определенной частоте. Данное преобразование используется для решения весьма сложных уравнений, которые описывают динамические процессы, возникающие под действием тепловой, световой или электрической энергии. Также ряды Фурье позволяют выделять постоянные составляющие в сложных колебательных сигналах, благодаря чему стало возможным правильно интерпретировать полученные экспериментальные наблюдения в медицине, химии и астрономии .

С ростом технологий, т.е. появление и развития компьютера, вывело преобразование Фурье на новый уровень. Данная методика прочно закрепилась практически во всех сферах науки и техники. В качестве примера можно привести цифровой аудио- и видеосигнал. Который стал наглядной реализацией роста научного процесса и применения рядов Фурье. Так, ряд Фурье в комплексной форме позволил совершить прорыв в изучении космического пространства. Кроме того, это повлияло на изучение физики полупроводниковых материалов и плазмы, микроволновой акустики, океанографии, радиолокации, сейсмологии .

Рассмотрим фазовый спектр периодического сигнала определяется из следующего выражения:

где символами и соответственно обозначены мнимая и действительная части величины, заключенной в квадратные скобки.

Если умножить на действительную постоянную величину K, то разложение в ряд Фурье имеет следующий вид:

Из выражения (1) следует, что фазовый Фурье-спектр обладает следующими свойствами:

1) является функцией , т. е. в отличие от спектра мощности, который не зависит от , , изменяется при сдвиге сигнала вдоль оси времени;

2) не зависит от К, т. е. инвариантен к усилению или ослаблению сигнала, в то время как спектр мощности является функцией К.

3) т. е. является нечетной, функцией n.

Примечание. С учетом геометрической интерпретации приведенных выше рассуждений, можно выразить через спектр мощности и фазовый спектр следующим образом:

Поскольку

то из (2) и (3) следует, что может быть восстановлен однозначно, если известны амплитудный (или спектр мощности) и фазовый спектры.

Рассмотрим пример. Нам дана функция на промежутке

Общий вид ряда Фурье:

Подставим свои значения и получим:

Подставим свои значения и получим.