От чего зависит угол сдвига фаз напряжения и тока в цепи. Угол сдвига фаз между током и напряжением

Из серии "Физические основы звука" , посвященной объяснению основ физических процессов, с которыми приходится сталкиваться музыкантам и просто любителям музыки. Материал дается языком, доступным для людей далеких от техники и сегодня мы рассмотрим фазу сигнала и фазовый сдвиг.

Мы вплотную подошли к тому, чтобы рассказать, что же такое фаза.

Посмотрим на формулу, описывающую синусоидальное колебание:

S(t)=Amp*sin(Ф) ,

где S(t) - это значение сигнала (уровень звукового давления, величина семпла,

уровень напряжения на входе колонок) в момент времени t;

Amp - амплитуда сигнала (максимально возможное значение для этого колебания);

sin - синусоидальная функция.

Ф - фаза сигнала равна:

Ф=2*PI*f+ф/360*2*PI

PI - число «пи»;

f - частота (высота тона) сигнала в Герцах;

ф - сдвиг фазы сигнала в градусах.

Фаза в течении периода колебания меняется от 0 до 360 градусов . Потом опять - от 0 до 360, и так далее. Поскольку фаза однозначно связана с уровнем колебания в точке периода, соответствующего фазе, то:

Фазу, с некоторым допущением, можно рассматривать, как мгновенный уровень сигнала в определенной точке времени внутри периода.

При значении фазы 0 градусов - уровень сигнала (синусоиды) равен 0.

При значении фазы 90 градусов - 1 Па.

При значении фазы 180 градусов - снова 1 Па.

При значении фазы 360 градусов (все равно, что 0 градусов следующего периода) - снова 0 Па.

С течением времени уровень сигнала изменяется по определенному закону, поэтому грубо можно сказать и так:

ФАЗА СИГНАЛА - это уровень сигнала в текущий момент времени.

ФАЗА СИГНАЛА - это уровень звукового давления в текущий момент времени в нашей точке пространства.

Теперь о том, как такое виртуальное понятие, как ФАЗА СИГНАЛА влияет на реальную жизнь.

Допустим две колонки порождают в точке нахождения слушателя переменные звуковые давления, которые складываются друг с другом. Эти давления то нарастают, то убывают. А если мы предположим, что давления от обоих колонок изменяются одинаково, но всегда в противоположную сторону. То есть,

давление от первой колонки 0,5 Па (паскалей), а от второй минус 0,5 Па,

от первой минус 1 Па, от второй 1 Па.

Такое явление называется противофазой . Суммарная громкость звука в точке слушателя - всегда равна нулю.

Что же такое противофаза по формуле синусоидального колебания?

S(t)=Amp*sin(2*PI*f+ф/360*2*PI)

Это когда в одной колонке сигнал изменяется по формуле

S(t)=Amp*sin(2*PI*f+0) , фазовый сдвиг ф=0 градусов.

А в другой колонке сигнал изменяется по формуле (сигналы по форме одинаковые, но с задержкой по времени)

S(t)=Amp*sin(2*PI*f+180/360*2*PI) , фазовый сдвиг ф=180 градусов.

360 градусов - длина периода сигнала, 180 градусов - половина периода сигнала.

Иными словами колебание во второй колонке задержано на половину периода (на 180 градусов).

Если задержка равна нулю , то уровень сигнала наоборот увеличивается, т.к. давление от первой колонки - 1 Па, от второй 1 Па, в сумме 1+1=2 Па. В этом случае говорят, что сигналы в фазе (фазовый сдвиг равен 0 градусов).

При значениях фазового сдвига от 0 до 180 градусов - суммарный уровень громкости становится меньше , пока не станет равным нулю при значении фазового сдвига 180 градусов .

Если фазовый сдвиг становится больше 180 градусов , то суммарный уровень громкости опять возрастает .

ПРОДОЛЖЕНИЕ СЛЕДУЕТ...

На якоре генератора укреплены два одинаковых витка 1 и 2, сдвинутых в пространстве (рис. 5-6). При вращении якоря в витках будут наводиться э. д. с. одной частоты и с одинаковыми амплитудами; так как витки вращаются с одинаковой угловой скоростью в одном и том же магнитном поле.

Вследствие сдвига витков в пространстве, витки неодновременно проходят под серединами полюсов и э. д. е. неодновременно достигают амплитудных значений.

При вращении якоря с угловой скоростью и в направлении, обратном ходу часовой стрелки, в момент начала отсчета времени витки расположены под углами к нейтральной плоскости (рис. 5-6).

Рис. 5-6. Два витка обмотки якоря генератора.

Рис. 5-7. Графики двух переменных э. д. с.

Наведенные в витках э. д. с.

где угол называется фазным углом или просто фазой, так что мгновенное значение синусоидальной величины определяется амплитудой и фазой.

Графики этих э. д. с. построены на рис. 5-7.

В начальный момент времени наводимые в витках э. д. с.

На рис. 5-7 они изображены начальными ординатами. Электрические углы , определяющие значения э. д. с. в начальный момент времени, называются начальными фазными углами или просто начальными фазами.

Таким образом, синусоидальная величина характеризуется: 1) амплитудой, 2) частотой или периодом и 3) начальной фазой.

Разность начальных фаз двух синусоидальных величин одной частоты называется углом сдвига фаз (сдвигом фаз):

Сдвиг фаз показывает, на какую часть периода или на какой промежуток времени одна синусоидальная величина достигает начала периода раньше другой величины.

За начало периода считают момент времени, в который синусоидальная величина проходит через нулевое значение, после которого она положительна. Та величина, у которой начало периода достигается раньше, чем у другой, считается опережающей по фазе, а та, у которой то же значение достигается позже - отстающей по фазе.

Две синусоидальные величины, имеющие одинаковые начальные фазы, совпадают по фазе. Две синусоидальные величины, угол сдвига фаз которых равен 180°, изменяются в противофазе.

Пример 5-3. Две э. д. с. заданы уравнениями

Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

. (162.1)

При имеем и , как это объяснено выше.

Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе., как это объяснено выше.

Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

От величины активного, индуктивного и ёмкостного сопротивления.
tg w = (X-C)/R. Где w - угол сдвига фаз, X - индуктивное сопротивление, C- ёмкостное сопротивление, R- активное сопротивление.

Угол сдвига фаз между напряжением и током в электрической цепи определяется аргументом ее комплексного сопротивления  . Поэтому при анализе цепи часто бывает достаточно определить характер изменения этого угла при вариации некоторого параметра.

Пусть R= const, а X =var. Тогда конец вектора Z будет скользить по прямой R= const (рис. 2). При X = 0 сопротивление Z вещественное, т.е. чисто резистивное и сдвиг фаз между током и напряжением  равен нулю.

Аналитический расчет токи в цепи по методу узловых напряжений

Метод узловы́х потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений , в которой неизвестными являются потенциалы в узлах цепи . В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным 0. Затем узлы нумеруются, после чего составляется система уравнений .

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов , примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Проверка баланса мощностей

Баланс мощностей является следствием закона сохранения энергии - суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.



Баланс мощностей используют для проверки правильности расчета электрических цепей.

Здесь мы рассмотрим баланс для цепей постоянного тока.

Например. У нас есть электрическая цепь.

Для проверки правильности решения составляем баланс мощностей.

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус ). Баланс мощностей для заданной цепи запишется так:

Закон Ома для переменного тока

Если цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I·Z

    U = U 0 e iωt - напряжение или разность потенциалов,

    I - сила тока,

    Z = Re -iδ - комплексное сопротивление (импеданс),

    R = (R a 2 +R r 2 ) 1/2 - полное сопротивление,

    R r = ωL - 1/ωC - реактивное сопротивление (разность индуктивного и емкостного),

    R а - активное (омическое) сопротивление, не зависящее от частоты,

    δ = -arctg R r /R a - сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведен взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U 0 sin(ωt + φ) подбором такой U = U 0 e iωt , что I n U = U . Тогда все значения токов и напряжений в схеме надо считать как F = ImF .

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

2. Чему равен сдвиг фаз между напряжением и током в цепи, содержащей катушку, ёмкость?

Сдвиг фаз - разность между начальными фазами двух переменных величин, изменяющихся во времени периодически с одинаковой частотой. Сдвиг фаз является величиной безразмерной и может измеряться в градусах, радианах или долях периода. В электротехнике сдвиг фаз между напряжением и током определяет коэффициент мощности в цепяхпеременного тока.

В радиотехнике широко применяются RC-цепочки, сдвигающие фазу приблизительно на 60°. Чтобы сдвинуть фазу на 180° нужно включить последовательно три RC-цепочки. Применяется в RC-генераторах.

Наведённая во вторичных обмотках трансформатора ЭДС для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. При противофазном включении обмотоктрансформатор изменяет полярность мгновенного напряжения на противоположную, в случае синусоидального напряжения сдвигает фазу на 180°. Применяется в генераторе Мейснера и др.

рис.305

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева - схема опыта, справа - результаты дает форму напряжения между обкладками конденсатора (точками а и b), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на p/2). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305, б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на p/2). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305, в). В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от +p/2 до -p/2 и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи. В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением? Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305, в. Если цепь имеет заметную индуктивность L , то при прохождении по ней переменного тока в цепи возникает ЭДС . самоиндукции. Эта ЭДС по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе оттока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения. Если активным сопротивлением цепи R можно пренебречь по сравнению с ее индуктивным сопротивлением XL=wL , то отставание тока от напряжения по времени равно Т/4 (сдвиг фаз равен p/2 ), т. е. максимум u совпадает с i=0 , как это показано на рис. 305, б. Действительно, в этом случае напряжение на активном сопротивлении Ri=0 , ибо R=0 , и, следовательно, все внешнее напряжение u уравновешивается ЭДС индукции, которая противоположна ему по направлению: u=LDi/Dt . Таким образом, максимум u совпадает с максимумом Di/Dt , т. е. наступает в тот момент, когда i изменяется быстрее всего, а это бывает, когда i=0 . Наоборот, в момент, когда i проходит через максимальное значение, изменение тока наименьшее (Di/Dt=0 ), т. е. в этот момент u=0. Если активное сопротивление цепи R не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения и падает на сопротивлении R , а остальная часть уравновешивается э. д. с. самоиндукции: u=Ri+LDi/Dt . В этом случае максимум i отстоит от максимума и по времени меньше, чем на T/4 (сдвиг фаз меньше p/2 ), как это изображено