Многофакторный линейный корреляционный и регрессионный анализ. Многофакторный регрессионный анализ

Явления общественной жизни складываются под воздействием целого ряда факторов, то есть являются многофакторными. Между факторами существуют сложные взаимосвязи, поэтому их нельзя рассматривать как простую сумму изолированных влияний. Изучение связи между тремя и более связанными между собой признаками носит название многофакторного корреляционно-регрессионного анализа.

Впервые это понятие было введено Пирсоном в 1908 году.

Многофакторный корреляционно-регрессионный анализ включает в себя следующие этапы:

  • - теоретический анализ, направленный на выбор факторных признаков, существенных для поставленной задачи;
  • - выбор формы связи (уравнения регрессии);
  • - отбор существенных факторных признаков, удаление из модели несущественных, объединение нескольких факторных признаков в один (этот признак не всегда имеет содержательную интерпретацию);
  • - вычисление параметров уравнения регрессии и коэффициентов корреляции;
  • - проверка адекватности полученной модели;
  • - интерпретация полученных результатов.

На этапе отбора факторных признаков необходимо учитывать, что даже если числовые данные свидетельствуют о наличии связи между двумя величинами, это может быть лишь отражением того факта, что они обе зависят от одной или нескольких величин (например, длина волос - рост - пол; синдром пингвина).

Для любой формы зависимости, особенно в условиях малого объема исследуемой совокупности можно выбрать целый ряд уравнений, которые в той или иной степени будут описывать эти связи. Практика построения многофакторных моделей взаимосвязи показывает, что обычно для описания зависимостей между социально-экономическими явлениями используют линейные, полиномиальные, степенные, гиперболические функции. При выборе модели пользуются опытом предшествующих исследований или исследований в смежных областях.

Преимуществом линейных моделей является простота расчета параметров и экономической интерпретации. Зависимости, нелинейные по переменным (квазилинейные) могут быть приведены к линейной форме путем замены переменных. Параметры уравнения множественной регрессии находятся по методу наименьших квадратов из системы нормальных уравнений. В условиях использования ЭВМ определение параметров, как для линейных, так и для нелинейных зависимостей может быть осуществлено численными методами.

Важным этапом построения уже выбранного уравнения множественной регрессии является отбор факторных признаков. Для адекватного отражения моделируемого процесса в модель необходимо включить максимальное количество факторов, но, с другой стороны, избыточное количество параметров затрудняет работу с моделью. Кроме того, для того, чтобы полученные результаты были достаточно надежными и воспроизводимыми на каждый факторный признак должно приходиться 10-20 наблюдений. Поэтому необходим отбор факторов на основе анализа их значимости.

Отбор факторов может быть проведен на основании:

метода пошагового исключения;

метода пошаговой регрессии.

Сущность метода пошагового исключения заключается в последовательном исключении из уравнения регрессии тех факторов, чьи параметры оказались незначимыми при проверке по критерию Стьюдента.

Использование метода пошаговой регрессии заключается в том, что факторы вводятся в уравнение регрессии поочередно, и при этом оценивается изменение суммы квадратов остатков и множественного коэффициента корреляции. Фактор считается незначимым и исключается из рассмотрения, если при его включении в уравнение регрессии не изменилась сумма квадратов остатков, даже если при этом изменились коэффициенты регрессии. Фактор считается значимым и включается в модель, если при этом увеличился коэффициент множественной корреляции и уменьшилась сумма квадратов остатков, даже если при этом коэффициенты регрессии изменились несущественно.

При построении моделей регрессии может возникнуть проблема, связанная с мультиколлинеарностью. Сущность этой проблемы заключается в том, что между факторными признаками существует значительная линейная связь. Мультиколлинеарность возникает в том случае, когда факторы выражают одну и ту же сторону явления или один является составным элементом другого. Это приводит к искажению рассчитываемых параметров регрессии, осложняет выделение существенных факторов и изменяет смысл экономической интерпретации коэффициентов регрессии. Индикатором мультиколлинеарности служат выборочные коэффициенты корреляции () характеризующие тесноту связи между факторами и:

Устранение мультиколлинеарности может реализовываться путем исключения из корреляционной модели одного или нескольких линейно-связанных признаков или преобразование исходных факторных признаков в новые, укрупненные факторы.

После построения уравнения регрессии проводится проверка адекватности модели, включающая в себя проверку значимости уравнения регрессии и коэффициентов регрессии.

Вклад каждого фактора в изменение результативного признака оценивают по коэффициентам регрессии, по частным коэффициентам эластичности каждого фактора и по стандартизированным частным - коэффициентам регрессии.

Коэффициент регрессии показывает абсолютный уровень влияния фактора на результативный показатель при среднем уровне всех прочих входящих в модель факторов. Однако тот факт, что коэффициенты измеряются (в общем случае) в разных единицах измерения, не позволяет сравнить степени влияния признаков. Пример. Сменная добыча угля (т) зависит от мощности пласта (м) и уровня механизации (%):

Частные коэффициенты эластичности показывают, на сколько процентов в среднем изменяется анализируемый показатель с изменением на 1% каждого фактора при фиксированном положении других:

где - коэффициент регрессии при - том факторе, - среднее значение -того фактора, - среднее значение результативного признака.

· коэффициенты показывают, на какую часть среднего квадратического отклонения изменяется результативный признак с изменением - того факторного признака на величину его среднего квадратического отклонения.

где - среднее квадратическое отклонение -того фактора, - среднее квадратическое отклонение результативного признака.

Таким образом, по перечисленным показателям выявляют факторы, в которых заложены наибольшие резервы изменения результативного признака.

Кроме того, для выявления экстремальных наблюдений может быть проведен анализ остатков.

В рамках многомерного корреляционного анализа рассматривают две типовые задачи:

  • - оценка тесноты связи двух переменных при фиксировании или исключении влияния всех остальных;
  • - оценка тесноты связи одной переменной со всеми остальными.

В рамках решения первой задачи определяются частные коэффициенты корреляции - показатели, характеризующие тесноту связи между тым и тым признаками при элиминации всех остальных признаков.

В многомерном корреляционном анализе рассматриваются две типовые задачи:

Определение тесноты связи одной переменной (результативного признака) с совокупностью всех остальных переменных (факторных признаков), включенных в анализ.

Определение тесноты связи между двумя переменными при фиксировании или исключении влияния остальных переменных.

Эти задачи решаются при помощи множественных и частных коэффициентов корреляции.

Для их определения может быть использована матрица выборочных коэффициентов корреляции:

где - количество признаков, - выборочный парный коэффициент корреляции.

Тогда теснота взаимосвязи результативного признака с совокупностью факторных признаков в целом может быть измерена при помощи множественного (совокупного) коэффициента корреляции. Оценкой этого показателя является выборочный множественный коэффициент корреляции:

где - определитель матрицы

С помощью множественного коэффициента корреляции может быть сделан вывод о тесноте взаимосвязи, но не о ее направлении.

Если факторные признаки коррелируют друг с другом, то на величине парного коэффициента корреляции частично сказывается влияние других переменных. В связи с этим возникает задача исследовать частную корреляцию между переменными при исключении (элиминировании) влияния одной или нескольких других переменных. Выборочный частный коэффициент корреляции между переменными может быть рассчитан по формуле:

где - алгебраическое дополнение соответствующего элемента корреляционной матрицы

Частный коэффициент корреляции может принимать значения от -1 до 1.

В многофакторном корреляционном анализе изучается зависимость одного (одномерный КА) или нескольких (многомерный КА) результатов от нескольких факторов.

Вначале рассмотрим одномерный многофакторный корреляционный анализ и затем для сравнения - особенности многомерного К А, так как отличия его от одномерного несущественны.

Основной моделью, в рамках которой решаются задачи многофакторного анализа, является линейная модель вида

где е к - ошибка наблюдения.

  • X.

Особенностью многофакторного корреляционного анализа является то, что рассмотренные выше коэффициент корреляции и корреляционное отношение не содержат достаточно полной информации о взаимосвязи величин Y и X, в связи с чем возникает необходимость использования ряда других показателей, а именно:

  • - полных парных коэффициентов корреляции;
  • - частных коэффициентов корреляции;
  • - множественных коэффициентов корреляции.

Это объясняется тем, что в многофакторном, а, тем более, в многомерном случаях взаимосвязи между переменными существенно усложняются и коэффициент корреляции между двумя переменными может не соответствовать действительности. Например, корреляция между Y и X. может быть обусловлена их зависимостью от X fc , в то время как при фиксированном значении Х к эти величины являются стохастически независимыми. Поэтому при изучении связи между этими величинами необходимо исключить влияние X fc , т. е. найти тесноту связи между Y и X. при фиксированном значении X fc .

Многообразие связей между переменными находит отражение в частных и множественных коэффициентах корреляции. Если имеется совокупность с га признаками, то взаимозависимость между ними можно описать корреляционной матрицей Q , состоящей из парных коэффициентов корреляции


где г. к - парные коэффициенты корреляции;

т - порядок матрицы.

В случае многомерной корреляции зависимости между признаками более многообразны и сложны, чем в двумерном случае. Одной корреляционной матрицей нельзя полностью описать зависимости между признаками. Поэтому необходимо использовать частные коэффициенты корреляции. Частный коэффициент корреляции, так же как и парный коэффициент корреляции, изменяется в пределах от -1 до +1. В общем виде, когда система состоит из т признаков, частный коэффициент корреляции к-то порядка может быть найден из корреляционной матрицы. Например, при m = 5 и к = 2 необходимо определить частный коэффициент корреляции г 12 4 , т. е. как факторы 1 и 2 связаны с факторами 4 и 5. При этом фактор номер 3 не учитывается (фиксируется). В этом случае из исходной матрицы Q 5 необходимо вычеркнуть третью строку и третий столбец.

Формула для определения частного коэффициента корреляции имеет вид:

где - алгебраические дополнения к соответствующим

элементам корреляционной матрицы.

Часто представляет интерес оценить связь одного из признаков со всеми остальными. Это можно сделать с помощью множественного, или совокупного, коэффициента корреляции, который также вычисляется с использованием корреляционной матрицы

где |gj - определитель корреляционной матрицы, составленной из парных коэффициентов корреляции;

q.. - алгебраическое дополнение к элементу г ...

При проведении многофакторного корреляционного анализа решаются следующие задачи:

  • - оценивание наличия и тесноты связи между результатом Y и каждым фактором X.;
  • - оценивание тесноты связи между результатом Y и фактором X. при фиксированных значениях остальных факторов.

Пример 10.2. После качественного анализа факторов, влияющих на положение компании на рынке телекоммуникационных услуг, для проведения количественного анализа были оставлены следующие факторы Х.

Х х - количество сданных в аренду скоростных каналов,

Х 2 - количество каналов доступа в Интернет, шт.;

Х 3 - курс доллара США по отношению к рублю, руб.;

Х 4 - средний тариф на аренду одного канала, руб.;

Х 5 - доля каналов, приходящаяся на банковские структуры, шт.

В качестве выходных величин Y., характеризующих положение компании, приняты две величины:

Y: - общее количество каналов сданных в аренду, шт.;

Y 2 - доход компании, руб.

Данные по указанным величинам за два года приведены в табл. 10.3.

Таблица 10.3

Окончание табл. 10.3

С использованием пакета прикладных программ были проведены расчеты матрицы коэффициентов парной корреляции. Результаты расчетов приведены в табл. 10.4.

Таблица 10.4

В двух последних строках табл. 10.4 помещены значения выборочных средних и выборочных средних квадратических отклонений, необходимые для построения уравнения линейной регрессии.

Анализ корреляционной матрицы осуществляется по следующему правилу. Если коэффициент парной корреляции между факторами окажется близким к 1 (по крайней мере, превысит значение 0,9), то это означает, что наблюдается эффект мультиколлинеарности и исключению из рассмотрения подлежит тот фактор, который имеет наименьший коэффициент парной корреляции с выходной переменной (общим количеством каналов, сданных в аренду Y v или доходом компании

Руководствуясь данным правилом, для дальнейшего рассмотрения имеет смысл оставить два фактора Х 3 - курс доллара по отношению к рублю и Х 4 - средний тариф на аренду одного канала. Фактор Х 5 - доля каналов на банковские структуры - может быть исключен ввиду малости значения коэффициента парной корреляции.

С использованием выражений (10.13 и 10.15) были получены уравнения регрессии

Сопоставление действительных значений величин У [ иУ 2 с предсказанными по уравнениям (10.17) показали незначительные расхождения в пределах одного года (не более 3%), что говорит о приемлемом качестве модели для использования при интерполяции. Однако основная задача разработки регрессионной модели заключалась в использовании ее для целей экстраполяции. Как показывает проведенный анализ, полученная модель не может быть использована для целей прогноза в связи с существенной нелинейностью величин У 1 и У 2 .

Для определения прогнозных значений, характеризующих положение компании на рынке телекоммуникационных услуг в данной ситуации целесообразно использовать методы анализа временных рядов, регрессионного анализа (с построением полиномиальных моделей второй и, возможно, более высокой степени) . Эти методы могут быть использованы для среднесрочного прогноза.

Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей. Исследование взаимосвязи случайных величин биржевых ставок приводит к теории корреляции, как разделу теории вероятностей и корреляционному анализу, как разделу математической статистики. Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.

Формально корреляционная модель взаимосвязи системы случайных величин может быть представлена в следующем виде: , где Z - набор случайных величин, оказывающих влияние на

Экономические данные почти всегда представлены в виде таблиц. Числовые данные, содержащиеся в таблицах, обычно имеют между собой явные (известные) или неявные (скрытые) связи.

Явно связаны показатели, которые получены методами прямого счета, т. е. вычислены по заранее известным формулам. Например, проценты выполнения плана, уровни, удельные веса, отклонения в сумме, отклонения в процентах, темпы роста, темпы прироста, индексы и т. д.

Связи же второго типа (неявные) заранее неизвестны. Однако необходимо уметь объяснять и предсказывать (прогнозировать) сложные явления для того, чтобы управлять ими. Поэтому специалисты с помощью наблюдений стремятся выявить скрытые зависимости и выразить их в виде формул, т. е. математически смоделировать явления или процессы. Одну из таких возможностей предоставляет корреляционно-регрессионный анализ.

Математические модели строятся и используются для трех обобщенных целей:

  • - для объяснения;
  • - для предсказания;
  • - для управления.

Представление экономических и других данных в электронных таблицах в наши дни стало простым и естественным. Оснащение же электронных таблиц средствами корреляционно-регрессионного анализа способствует тому, что из группы сложных, глубоко научных и потому редко используемых, почти экзотических методов, корреляционно-регрессионный анализ превращается для специалиста в повседневный, эффективный и оперативный аналитический инструмент. Однако, в силу его сложности, освоение его требует значительно больших знаний и усилий, чем освоение простых электронных таблиц.

Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные). Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели. В экономике значимое уравнение используется, как правило, для прогнозирования изучаемого явления или показателя.

Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений. Электронные таблицы делают такой анализ легко доступным. Таким образом, регрессионные вычисления и подбор хороших уравнений - это ценный, универсальный исследовательский инструмент в самых разнообразных отраслях деловой и научной деятельности (маркетинг, торговля, медицина и т. д.). Усвоив технологию использования этого инструмента, можно применять его по мере необходимости, получая знание о скрытых связях, улучшая аналитическую поддержку принятия решений и повышая их обоснованность.

Корреляционно-регрессионный анализ считается одним из главных методов в маркетинге, наряду с оптимизационными расчетами, а также математическим и графическим моделированием трендов (тенденций). Широко применяются как однофакторные, так и множественные регрессионные модели.

Корреляционный анализ является одним из методов статистического анализа взаимосвязи нескольких признаков.

Он определяется как метод, применяемый тогда, когда данные наблюдения можно считать случайными и выбранными из генеральной совокупности, распределенной по многомерному нормальному закону. Основная задача корреляционного анализа (являющаяся основной и в регрессионном анализе) состоит в оценке уравнения регрессии.

Корреляция - это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

  • 1. Парная корреляция - связь между двумя признаками (результативным и факторным или двумя факторными).
  • 2. Частная корреляция - зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков.
  • 3. Множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным признаком и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определить “полезность” факторных признаков при построении уравнений множественной регрессии. Величина коэффициентов корреляции служит также оценкой соответствия уравнению регрессии выявленным причинно-следственным связям.

Первоначально исследования корреляции проводились в биологии, а позднее распространились и на другие области, в том числе на социально-экономическую. Одновременно с корреляцией начала использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. И корреляция, и регрессия служат для установления соотношений между явлениями и для определения наличия или отсутствия связи между ними.

В состав Microsoft Excel входит набор средств анализа данных (так называемый пакет анализа), предназначенный для решения сложных статистических и инженерных задач. Для проведения анализа данных с помощью этих инструментов следует указать входные данные и выбрать параметры; анализ будет проведен с помощью подходящей статистической или инженерной макрофункции, а результат будет помещен в выходной диапазон. Другие средства позволяют представить результаты анализа в графическом виде.

Пример 1.Даны следующие данные:

№ предприя-тия

Уров.издержек обращ.(y)

Грузооборот, тыс.руб(x1)

Фондоемкость руб/тыс.т(x2)

Необходимо провести многофакторный корреляционно-регрессионный анализ.

Чтобы провести многофакторный корреляционно-регрессионный анализ нужно составить следующую таблицу:

Таблица 1

№ предприятия

Уров.издержек обращ.(y)

Грузооборот, тыс.руб(x1)

Фондоемкость руб/тыс.т(x2)

ср. знач-е:

(x1-x1среднее)^2

(x2-x2среднее)^2

(y-y среднее)^2

Исходя из таблицы 1 получаем таблицу 2:

Таблица 2

0,03169Z2-0,6046Z1

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://сайт

Многофакторная модель корреляционно-регрессионного ан а лиза

С помощью корреляционно-регрессионного анализа мы сможем определить динамику стоимости недвижимости, и влияние отдельных факторов на стоимость недвижимости, а так же установим, какие из этих факторов оказывают наибольшее влияние на стоимость недвижимости.

Система факторов всегда формируется на стадии логического анализа. Конкретное построение модели осуществляется на основе собранной исходной информации с количественными оценками факторов.

Показатели, включаемые в статистическую модель, должны быть качественно однородны, независимы друг от друга, достаточны по количеству измерителей для статистической обоснованности результатов регрессионного анализа. Количество измерений должно превосходить число факторов не менее чем в 2 раза.

Этапы выполнения работы:

1. Ввод исходных данных;

2. Расчет корреляционной матрицы;

3. Определить коллинеарность;

4. Определить параметры уравнения регрессии;

5. Анализ факторов по коэффициенту эластичности;

6. Оценка параметров уравнения регрессии;

7. Оценить значимость показателей тесноты связи r;

8. Оценка значимости коэффициента детерминации R 2 ;

9. Доверительные интервалы для коэффициентов уравнения регрессии;

10. Доверительные интервалы для средних значений факторных признаков;

11. Автокорреляция

Пример расчета

1. Ввод исходных данных

Систему функциональных показателей формируем на стадии логического анализа.

При построении многофакторной модели прогнозирования стоимости недвижимости, могут быть включены следующие факторы:

Результирующий признак: Y -стоимость недвижимости, $;

Факторные признаки:

Х 1 -стоимость одного квадратного метра объекта, $;

Х 2 - валютный курс;

Х 3 - уровень доходности населения, $;

Х 4 - социально-политическое положение, баллы;

Х 5 - инфраструктура, баллы;

Х 6 - состояние объекта, ремонт, баллы;

Х 7 - количество телефонов, штук;

Х 8 - количество телефонов

Так как для статистического анализа требуется ввести факторы за какой-то промежуток времени, то нами была составлена таблица данных факторов для нескольких наблюдений за 10 лет, которая представлена ниже:

2. Расчет корреляционной матрицы

Введем составленную матрицу в Excel. С помощью надстройки Анализ данных в меню Сервис рассчитаем корреляционную матрицу. Для этого в появившемся окне “Анализ данных” в поле “Инструменты анализа” активизируем строку “Корреляция”. В окне “Корреляция” введем входной интервал, выделяя с помощью мыши столбы и строки исходной таблицы, включая заголовки (за исключением столбца годы); установим флаг на “Метки в первой строке”; затем в поле “Выходной интервал” укажем левую верхнюю ячейку, начиная с которой должна появиться матрица результатов - корреляционная матрица.

Корреляционная матрица:

Корреляционная матрица - симметричная матрица, в которой относительно главной диагонали, на пересечении i-ой строки и j-го столбца, расположены коэффициенты парной корреляции между i-мы и j-ми факторами. По главной диагонали коэффициенты равны 1.

В последней строке корреляционной матрицы расположены коэффициенты парной корреляции между факторными и результирующим признаками.

Учитывая, что, при r < 0 связь обратная, при r > 0 - связь прямая.

Анализируя первый столбец корреляционной матрицы, отберем факторы, влияющие на результирующий признак.

Если коэффициент корреляции, то связь между i-ым фактором и результирующим признаком тесная, тогда этот фактор влияет на среднемесячную заработную плату и остается в модели. В соответствии с этим выпишем соответствующие коэффициенты корреляции:

Вывод: Анализ последней строчки корреляционной матрицы показывает, что факторы Х2 , Х4 , Х5 , Х6 , Х8 исключаются из модели, так как коэффициент корреляции, а для дальнейшего рассмотрения в данной модели остаются факторы Х1 , Х3 , Х7 .

3 . Определение колинеарности

Колинеарность - это зависимость факторных признаков между собой. Связь между факторными и результирующим признаками должна быть более тесная, чем связь между самими факторами, то есть для любой пары отобранных факторов должно выполнять отношение:

Если соотношения данной системы выполняются, то оба фактора остаются в модели. Если соотношения не выполняются, то один из факторов нужно исключить из модели. Обычно исключаются факторы с меньшим коэффициентом корреляции, зависимость которых с результирующим меньше. Но при удалении факторов в каждой конкретной задаче необходимо смотреть смысловое содержание факторов. Формальный подход не допустим.

Определяем колинеарность между факторами:

условие выполняется, оба фактора остаются в модели;

условие не выполняется, фактор Х 7 исключается, так как;

Вывод: Таким образом, в результате анализа, для составления прогнозируемой функции оставляем фактор Х 1 , Х 3 . Тогда уравнение регрессии приобретает следующий вид:

Y 0 + a 1 x 1 + a 2 x 3

4 . Определение параметров уравнения регрессии.

В рабочем поле Excel с помощью команды копирования создадим новую таблицу с исходными данными из оставшихся факторов и найдем средние значения по столбцам:

Для решения полученного уравнения регрессии после активизации сервисной программы Анализ данных в меню Сервис воспользуемся инструментом анализа - Регрессия. В данном диалоговом окне введем с помощью мыши входной интервал Y и X-ов; устанавим флаг на Метки; укажем начальную ячейку для выходного интервала и подтвердим начало расчета кнопкой ОК. В третьей из полученных таблиц ВЫВОДА ИТОГОВ найдем коэффициенты Y-пересечения и Х 1 , Х 3 и подставим полученные значения вместе со средними значениями Х-ов в уравнение регрессии:

Описательная статистика

Стандартная ошибка

Стандартное отклонение

Асимметричность

Интервал

Максимум

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

корреляционный регрессия матрица эластичность

Вывод:

1. Уравнение регресс имеет следующий вид:

2. Зависимость между стоимостью недвижимости (У) и стоимостью одного квадратного метра (Х 1), между стоимостью недвижимости (У) и уровнем доходности населения (Х 3), является более тесной, чем между стоимостью недвижимости и остальными факторами.

5 . Анализ факторов по коэффициенту эластичности

О значимости факторов нельзя судить по значению коэффициента регрессии. Анализ осуществляется по коэффициенту эластичности.

Коэффициент эластичности показывает, на сколько процентов изменяется резул ьтирующий признак при изменении факторного признака на 1%. Обычно берется 10%. Знак коэффициента эластичности всегда совпадает со знаком коэффициентов регрессии. Чем больше по модулю значение коэффициента эластичности, тем большее влияние оказывает этот фактор на результирующий признак.

.

Увеличим каждый фактор на 10%:

Подставляя средние значения факторов Х 1 , Х 3, а также их последовательно увеличенные на 10% значения в соответствующие уравнения регрессии, вычислим коэффициенты эластичности:

Коэффициент эластичности принято изображать графически.

Зависимость между Х 1 (стоимостью одного метра квадратного) и Y (стоимостью недвижимости объекта):

Вывод: при увеличении факторного признака Х 1 на 10 % результативный признак увеличивается на 11,91 %.

Зависимость между Х 3 (уровнем доходности населения) и Y (стоимостью недвижимости объекта)

Вывод: при увеличении факторного признака Х 3 на 10 % результативный признак сокращается на 3,42 %.

ВЫВОД: Анализ факторов по коэффициенту эластичности показал, что наибольшее влияние на стоимость недвижимости оказывает стоимость одного метра квадратного (фактор Х 1), затем уровень доходности населения (фактор Х 3).

6 . Оценка параметров уравнения регрессии

Для того, чтобы оценить параметры уравнения регрессии используется t- критерий Стьюдента. В таблице «дисперсионный анализ», в графе «t- статистика» содержатся рассчитанные на компьютере данные:

Эти значения сравниваются t - критическим, учитывая принятый уровень значимости б = 0,05 и k - число степеней свободы k = n-m-1; k=10-2-1=7, затем по таблице Стьюдента определяем, что: t кр = 2,365, либо рассчитываем это значение в Excel с помощью вставки функции < fx > в поле «Категория» выбираем Статистические в поле «выберите функцию» активизируем строку СТЮДРАСПОБР , с помощью которой компьютер возвращает t-значение распределения Стьюдента как функцию вероятности и числа степеней свободы, затем нажимаем «ОК». Компьютер запрашивает аргументы функции: в поле вероятность ставим значение 0,05, а в поле степень свободы -7

Параметры уравнения регрессии признаются типичными, если выполняются неравенства:

Подставим имеющие данные для сравнения:

Условие не выполняется

Условие не выполняется.

Вывод: Анализ параметров уравнения регрессии показал, что рассчитанные на компьютере данные не удовлетворяют условию сравнения. Поэтому математическая формула регрессии не может быть использована для прогнозирования стоимости недвижимости, а может быть использована только для практических расчетов.

7. Оценить значимость показателей тесноты связи r

Для этого применяется t- критерий Стьюдента. Расчетные значения t r для факторов Х 1 , Х 3 определяется по формуле:

где r - значения, рассчитанные в корреляционной матрице (столбец У) для объясняющих факторов

n - количество наблюдений.

Подставляя имеющиеся данные в формулу, получаем:

Рассчитанные значения надо сравнить с t- критическим равное 2,365. Показатели тесноты связи признаются типичными, если

Подставляя полученные данные, получим:

Условие выполняется

Условие выполняется

Вывод: все коэффициенты корреляции, соответствующие оставшимся факторам, признаются типичным, так как условие неравенства выполняется.

8 . Оценка значимости коэффициента детерминации R 2

Для этого используется F- критерий Фишера, величина которого берется из таблицы Фишера со степенями свободы:

к 1 = m = 2 - число объясняющих факторов.

к 2 = n-m-1= 10-2-1=7

Либо рассчитываем это значение в Excel с помощью вставки функции < fx > в поле «Категория» выбираем Статистические в поле «выберите функцию» активизируем строку F РАСПОБР , с помощью которой компьютер возвращает обратное значение для F-распределения вероятностей, затем нажимаем «ОК». Компьютер запрашивает аргументы функции: в поле вероятность ставим значение 0,05, в поле степень свободы1 ставим число объясняющих факторов, т.е. 2, а в поле степень свободы2 вводим к 2 = 7

Для определения статистической значимости коэффициента детерминации R 2 используется неравенство:

Значение F R рассчитывается по формуле:

Подставляя данные в неравенство получим: F расч =337,55 F крит. =4,737

Вывод:

Коэффициент детерминации R 2 является значимым, так как неравенство выполняется;

Величина R 2 =0,990- это означает, что 99 % общей вариации результативного признака объясняется изменением факторных признаков Х 1 ,Х 3 , а 1 % объясняется изменениями других факторов.

9. Доверительные интервалы для коэффициентов уравнения регрессии

Доверительные интервалы для коэффициентов множественной регрессии определяются:

а=499,986; Sa=29,254; tкрит.= 2,365

a 2 =-779,762; Sa 2 =644,425; tкрит.= 2,365

Вывод:

95% коэффициента регрессии а 1 лежит в интервале, а 5% вне этого интервала.

95% коэффициента регрессии а 2 лежит в интервале, а 5% вне этого интервала.

10 . Доверительные интервалы для средних значений факторных призн а ков

Доверительные интервалы для средних значений факторных признаков определяются:

где -стандартное отклонение (среднеквадратическое отклонение);

n - число наблюдений;

t находится по функции таблицы Лапласа

95% факторного признака (стоимость 1 м 2) лежит в интервале, а 5% вне этого интервала.

95% факторного признака (уровень доходности населения) лежит в интервале, а 5% вне этого интервала.

1 1 . Автокорреляция

А) Для определения величины коэффициента автокорреляции используются значения остатков, которые имеют следующий вид:

ВЫВОД ОСТАТКА

Дополнительные расчеты

Наблюдение

Предсказанное Y

Остатки i

Для определения величины коэффициента автокорреляции используется формула Дарвина - Оутсона:

использование, которой связано с дополнительными расчетами. Подставим данные в формулу и получим:

Коэффициент корреляции изменяется в пределах 0?dw?4.

Значит и размер автокорреляционного поля должен иметь эти же пределы.

Б) В автокорреляции содержатся (слева направо):

1. Зона положительной автокорреляции

2. Зона неопределенности

3. Зона отсутствия автокорреляции

4. Зона неопределенности

5. Зона отрицательной автокорреляции.

Размер зон неопределенности зависят от показателей таблицы Дарвина-Оутсона.

Для того чтобы найти в таблице нужные показатели надо знать номер столбца и строки.

Номер нужного столбца - это число объясняющих факторов уравнения регрессии: k=m=2;

Номер строки- это количество наблюдений: n=10.

В таблице находятся показатели d l и d u:

В левой половине автокорреляционного поля:

Нижняя граница зоны равна d l =0,697

Верхняя граница зоны равна d u = 1,641

Для правой половины автокорреляционного поля границы неопределенности надо рассчитать:

Верхняя граница зоны равна 4-d u = 4-1,641= 2,359

Нижняя граница зоны равна 4-d l =4-0,697= 3,303

Общая картина автокорреляционного поля может быть представлена в виде:

В) Коэффициент автокорреляции, его значение соответствует зоне отсутствия автокорреляции.

Размещено на сайт

Подобные документы

    Сущность корреляционно-регрессионного анализа и его использование в сельскохозяйственном производстве. Этапы проведения корреляционно-регрессионного анализа. Области его применения. Анализ объекта и разработка числовой экономико-математической модели.

    курсовая работа , добавлен 27.03.2009

    Расчет стоимости оборудования с использованием методов корреляционного моделирования. Метод парной и множественной корреляции. Построение матрицы парных коэффициентов корреляции. Проверка оставшихся факторных признаков на свойство мультиколлинеарности.

    задача , добавлен 20.01.2010

    Расчёт параметров линейного уравнения регрессии. Оценка регрессионного уравнения через среднюю ошибку аппроксимации, F-критерий Фишера, t-критерий Стьюдента. Анализ корреляционной матрицы. Расчёт коэффициентов множественной детерминации и корреляции.

    контрольная работа , добавлен 29.08.2013

    Сущность корреляционно-регрессионного анализа и экономико-математической модели. Обеспечение объема и случайного состава выборки. Измерение степени тесноты связи между переменными. Составление уравнений регрессии, их экономико-статистический анализ.

    курсовая работа , добавлен 27.07.2015

    Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.

    реферат , добавлен 25.01.2009

    Построение математической модели выбранного экономического явления методами регрессионного анализа. Линейная регрессионная модель. Выборочный коэффициент корреляции. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы.

    курсовая работа , добавлен 22.05.2015

    Ознакомление с основами модели простой регрессии. Рассмотрение основных элементов эконометрической модели. Характеристика оценок коэффициентов уравнения регрессии. Построение доверительных интервалов. Автокорреляция и гетероскедастичность остатков.

    лекция , добавлен 23.12.2014

    Статистический анализ по выборке. Проведение регрессионного анализа исходных данных и выбор аналитической формы записи производственной функции. Выполнение экономического анализа в выбранной регрессионной модели на основе коэффициентов эластичности.

    курсовая работа , добавлен 22.07.2015

    Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа , добавлен 29.06.2013

    Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.