Мероприятия по созданию благоприятных микроклиматических условий. Создание оптимальных условий микроклимата Производственный микроклимат основные мероприятия по его улучшению

Важнейшим оздоровительным мероприятием в цехах с неблагоприятным микроклиматом является механизация работ, в первую очередь физически тяжелых. Сюда относятся внедрение механизации выпуска и розлива металла, литье под давлением, механизация загрузки и выгрузки печей, ковшей, сушильных камер, механизация проката, стеклодувных работ и т. д.

Огромное значение имеет переход на новые технологические процессы, не связанные с необходимостью работать в условиях интенсивного облучения (дистанционное управление агрегатами, тоннельные печи вместо горнов для обжига посуды, кирпича, выпечки хлеба и т. д.).

Для достижения нормальных" метеорологических условий большое значение имеет ограничение выделений тепла в производственном помещении. С этой целью необходимо обеспечить термоизоляцию стенок печей плохими проводниками тепла (асбестит, кизельгур, коксовая мелочь и пр.).

Для изоляции рабочих от потоков лучистого тепла устраивают специальные экраны, асбестовые или металлические щиты.

Огромное значение в нормализации неблагоприятных метеорологических условий имеют вентиляционные устройства.

Для удаления избыточных тепловыделений с успехом применяют организованную естественную вентиляцию -- аэрацию производственных зданий.

Значительный гигиенический эффект получается при обдувании рабочих воздухом путем устройств воздушных душей. Воздушные души устраиваются на рабочих местах в целях борьбы с перегреванием и с воздействием лучистого тепла.

В горячих цехах с целью наилучшего использования перерывов необходимо организовать специальные комнаты отдыха с радиационным охлаждением. В этих комнатах стены охлаждаются. Низкая температура способствует быстрому восстановлению исходного уровня физиологических функций организма.

В целях борьбы с переохлаждением нужно уделять внимание устройству тамбуров, утеплению окон и дверей, соответствующему устройству стен и перекрытий. У наружных дверей необходимо устраивать тепловые воздушные завесы. Рабочие, работающие на холоде, должны быть снабжены теплой одеждой, и им должна быть предоставлена возможность периодически обогреваться в специально отведенном для этого теплом помещении.

Воздухообмен, м3/ч, при нормальном микроклимате и отсутствии вредных веществ или содержании их в пределах норм можно определить по формуле

где п -- численность работающих; L1 --расход воздуха на одного работающего, м3/ч, не менее

При выделении в воздух производственных помещений вредных веществ производительность систем вентиляции по притоку и вытяжке следует определять, руководствуясь количеством вредностей, поступающих в помещения.

Краткость воздухообмена-сколько раз меняется воздух за 1 час

Нормируемыми параметрами микроклимата являются: температура воздуха рабочей зоны, скорость движения воздуха, влажность, инфракрасное излучение, - эмпирический интегральный показатель (выраженный в °С), отражающий сочетанное влияние температуры воздуха, скорости его движения, влажности и теплового облучения на теплообмен человека с окружающей средой.

Таким образом, мероприятия по обеспечению оптимального и допустимого микроклимата будут касаться четырех его основных параметров: температура воздуха рабочей зоны, скорость движения воздуха, влажность, инфракрасное излучение. При разработке мероприятий необходимо учитывать сочетанное действие параметров микроклимата и сопутствующих факторов. Оно заключается в следующем:

  • высокая температура в сочетании с высокой скоростью движения воздуха обеспечивает температурный комфорт;
  • низкая температура и высокая скорость движения воздуха вызывают ощущение холода;
  • высокая физическая активность и низкая температура способствуют температурному комфорту;
  • высокая физическая активность и большое количество излучаемого тепла создают ощущение жары.

Комфортная с точки зрения микроклимата среда является идеальной для работы. При этом помимо увеличения эффективности работы, уменьшается вероятность совершения ошибок, ведущих к серьезным последствиям или несчастному случаю.

1. Температура и скорость движения воздуха, влажность

Нормализация микроклимата производственных помещений осуществляется путем проведения следующих мероприятий (см. ниже).

  • Оборудование зданий и помещений системами обогрева. К системам обогрева относят:

а) Радиаторы и конвекторы.

В качестве нагревательных приборов в отопительных системах конвекционного типа обычно используются чугунные радиаторы или конвекторы, выполненные из стали либо цветных металлов. Воздух обтекает радиатор снизу и спереди и, нагреваясь, поднимается вверх, проходит вдоль радиатора и выходит сверху нагретый и с заметной скоростью. Конвекторы отличаются от радиаторов тем, что имеют гораздо меньшие поверхности нагрева и располагаются в нижней части специального кожуха, который нужен для создания эффекта «дымохода», чтобы организовать движение воздуха мимо нагревательной поверхности и затем распределить поток нагретого воздуха по объему помещения. Характеристики кожуха конвектора зависят от размеров и положения отверстий для входа воздуха, а также от выбранного способа обдува нагревательной поверхности.

Рисунок 1

б) Системы с тепловентиляторами.

К системам конвективного нагрева относятся также применяемые в производственных помещениях системы с трубчатым калорифером, через который вентилятором с большой скоростью продувается воздух комнатной температуры. В условиях вынужденной конвекции в такой системе теплоотдача от нагревательной поверхности более интенсивна, чем для обычного конвектора или радиатора, поэтому эффективность обогрева существенно выше по сравнению с другими системами. Тепловентиляторы обычно выполняются в виде блока, который устанавливается у потолка в центре обогреваемого помещения. Кожух тепловентилятора имеет жалюзи, которые позволяют изменять направление потока нагретого воздуха, чтобы обеспечить лучшее перемешивание воздуха в помещении и предотвратить образование нежелательных застойных зон с градиентом температуры. Трубчатые калориферы с развитой поверхностью нагрева иногда используются в подающих каналах воздушных отопительных систем вместо непосредственного воздушного нагрева. Эффективность работы тепловентилятора зависит от многих факторов, в частности, от его расположения в помещении и направлений воз-душного потока на входе и выходе.

Рисунок 2

в) Воздушное отопление.

Этот термин относится к системам отопления, в которых подогретый воздух подается по проложенным в здании специальным каналам в отапливаемые помещения. Если комнатный воздух возвращается обратно для повторного нагрева, система называется рециркуляционной; в тех случаях, когда возврат воздуха не предусмотрен и в помещение поступает только подогретый наружный воздух, система называется вентиляционной. Последняя система используется только в тех помещениях, где рециркуляция воздуха недопустима. Воздушное отопление может быть естественным или принудительным. В системах с естественной циркуляцией перемещение воздуха происходит за счет разности температур и плотностей воздуха, поэтому важным требованием при проектировании воздуховодов является незначительность потерь на трение, чтобы обеспечить необходимую интенсивность циркуляции воздуха. В системах с принудительной циркуляцией используется внешний источник энергии для обеспечения требуемой интенсивности циркуляции. Поскольку скорости перемещения воздуха в системах с принудительной циркуляцией значительно выше, проблема перемешивания воздуха упрощается, однако возникает проблема шума в воздуховодах и распределительных решетках.

г) Системы лучистого обогрева.

Лучистый обогрев - это вид обогрева, основанный на принципе теплового излучения, которое представляет собой переход тепла от тела с более высокой температурой к телу с более низкой температурой. В установках лучистого обогрева вследствие направленного излучения в нижнюю зону помещения и передачи тепла непосредственно обогреваемым поверхностям, а не воздуху, отсутствует необходимость приращения мощности установки в расчете на высоту помещения. Отсутствие застоя теплого воздуха в районе кровли способствует уменьшению теплопотерь помещения и созданию более комфортных условий для помещения. Кроме этого, в помещениях, отапливаемых приборами лучистого отопления, температура воздуха может быть немного ниже традиционно расчетной, в то время как поверхности стен и оборудования имеют температуру выше, что в целом дает ощущение комфорта для людей в помещении.

д) Системы кабельного обогрева.

Они представляют собой нагревательные (греющие) кабели и нагревательные ткани. Кабельный обогрев позволяет эффективно и экономично решать многие проблемы, связанные с поддержанием температур, разогревом, антиобледенением. Системы кабельного обогрева широко используются при создании «теплых» полов, а также при решении нестандартных задач обогрева;

Рисунок 3

  • Установка стационарных и мобильных пунктов обогрева.
  • Установка и ремонт систем вентиляции и кондиционирования воздуха. Системы кондиционирования воздуха в производственных помещениях осуществляют в основном с применением одного из двух типов сплит-систем: обычных (настенных, напольных, кассетных ), которые размещаются непосредственно в каждом помещении, и канальных, требующих для подачи охлажденного воздуха в помещения наличия системы воздуховодов.

Рисунок 4

  • Защита фасада здания (кроме северного) защитными устройствами от солнца. К ним относятся шторы, жалюзи, козырьки, навесы . Они более эффективны, когда расположены с внешней стороны фасада (снаружи). Также эффективной защитой от солнечных лучей является использование солнцезащитных стекол.
  • Использование увлажнителей воздуха.
  • Воздушное душирование рабочих мест. Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером.

К организационно-техническим мероприятиям следует отнести следующие (см. ниже).

  • Рациональное размещение оборудования. Основные источники тепла располагают непосредственно под аэрационным фонарем, у наружных стен здания и в один ряд, чтобы тепловые потоки от них не перекрещивались на рабочих местах.
  • Проведение работ с использованием дистанционного управления и дистанционного наблюдения (защита «расстоянием»).
  • Внедрение рациональных технологических процессов и оборудования (замена горячего способа обработки металла холодным, пламенного нагрева - индукционным и т.п.).
  • использование тепловой изоляции оборудования различными видами теплоизоляционных материалов;
  • использование теплозащитных экранов;
  • использование водяных завес, которое представляет собой мелкодисперсное распыление пыли.

К организационным относятся мероприятия по защите «временем» (разработка оптимального режима труда и отдыха работающих). Для обеспечения средне-сменного термического напряжения работающих на допустимом уровне суммарная продолжительность их деятельности в условиях нагревающего микроклимата в течение рабочей смены не должна превышать 7, 5, 3 и 1 часа соответственно классам условий труда по степени вредности.

2. Защита от инфракрасного излучения

Для защиты от теплового излучения применяются средства коллективной и индивидуальной защиты. Основными методами коллективной защиты являются: * теплоизоляция рабочих поверхностей источников излучения теплоты. Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне. Для теплоизоляции применяют материалы с низкой теплопроводностью. Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и комбинированной. Мастичную изоляцию осуществляют путем нанесения на поверхность изолируемого объекта изоляционной мастики. Оберточная изоляция изготавливается из волокнистых материалов - асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов. Засыпная изоляция (например, керамзит) в основном используется при про-кладке трубопроводов в каналах и коробах. Штучная изоляция выполняется формованными изделиями - кирпичом, матами, плитами и используется для упрощения изоляционных работ. Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие слои - из мастичных и оберточных материалов;

  • экранирование источников или рабочих мест. Теплозащитные экраны применяют для экранирования источников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энергию. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По конструктивному выполнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим по-крытием. В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий - алюминиевую краску. Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты. Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверхности экрана не более 30…35°С.

Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3…3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет, используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы. Прозрачные экраны изготавливают из бесцветных или окрашенных стекол - силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотводящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.;

  • воздушное душирование рабочих мест;
  • использование водяных завес;

Рисунок 5

  • использование устройств кондиционирования. Кондиционирование воздуха - создание и автоматическое поддержание в закрытых помещениях температуры, влажности, чистоты, скорости движения воздуха в заданных пределах. Его применяют для достижения наиболее комфортных санитарно-гигиенических условий в рабочей зоне или в производственно-технологических целях для поддержания требуемых параметров микроклимата с помощью кондиционеров.

Кондиционеры бывают центральные (на несколько помещений) и местные (на одно помещение), производственные и бытовые;

  • использование вентиляционных систем и установок. К организационным относятся мероприятия по защите «временем». Во избежание чрезмерного (опасного) общего перегревания и локального повреждения (ожог) человека должна быть регламентирована продолжительность периодов непрерывного инфракрасного облучения и пауз между ними.

Рисунок 6

  • использование средств индивидуальной защиты. К ним относятся:

    • одежда специальная для защиты от повышенных температур (перегрева, брызг и искр расплавленного металла) В спецодежде этого класса используют материалы, способные определенное время удерживать брызги и искры металла (парусина с огнезащитной пропиткой, суконная ткань). Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани с металлизированной нитью.
    • средства защиты от повышенных температур (рукавицы, краги, перчатки изготовленные из сукна или спилка)
    • щитки защитные лицевые с металлизированным теплоотражающим покрытием.

Общие положения. Для обеспечения нормативных параметров микроклимата в производственных помещениях проводятся технологические, технические, санитарнотехнические и организационные мероприятия.

Наиболее радикальными методами управления микроклиматом являются:

  • · максимально возможная механизация и автоматизация тяжелых и трудоемких работ, выполнение которых сопровождается избыточным теплообразованием в организме человека;
  • · дистанционное управление теплоизлучающими поверхностями, исключающее необходимость пребывания работающих в зоне инфракрасного облучения;
  • · рациональное размещение и теплоизоляция оборудования, коммуникаций и других источников, излучающих теплоту в рабочую зону, так, чтобы исключалась возможность совмещения потоков лучистой энергии на рабочих местах. При возможности оборудование следует размещать на открытых площадках. Теплоизоляция его должна обеспечивать температуру наружных стенок не выше 45 °С;
  • · оборудование источников интенсивного влаговыделения с открытой поверхностью испарения (ванны, красильные и промывочные аппараты и другие емкости с водой или растворами) крышками или снабжение их местными отсосами.

При невозможности нормализации микроклимата в производственных помещениях следует применять защитные экраны, водяные и воздушные завесы, защищающие рабочие места от теплового излучения, а также водовоздушное или воздушное душирование.

Основной способ борьбы с лучистой теплотой (инфракрасным излучением) на рабочих местах заключается в изоляции излучающих поверхностей, т.е. создании определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций (жестких глухих, сетчатых полупрозрачных, водяных, водно-воздушных и др.)- Действие защитных экранов заключается либо в отражении лучистой энергии обратно к источнику излучения либо в ее поглощении. По принципу работы различают отражающие, поглощающие и теплоотводящие экраны. Однако это деление условно, так как любой экран обладает способностью отражать, поглощать или отводить теплоту. Принадлежность экрана к той или иной группе зависит от преимущественного свойства последнего. В зависимости от возможности наблюдения за ходом технологического процесса экраны можно разделить на три типа: непрозрачные, полупрозрачные и прозрачные.

Среди организационных мероприятий следует отметить следующие:

  • · организация рационального водно-солевого режима работающих с целью профилактики перегрева организма. Для этого к питьевой воде добавляют небольшое количество (0,2-0,5%) поваренной соли и насыщают ее диоксидом углерода (сатурируют). Прием газированной подсоленной воды позволяет быстро восстанавливать нарушенное вод- но-солевое равновесие организма, утолять жажду, компенсировать потоотделение и соответственно снижать потери массы. Диоксид углерода придает вкус воде и улучшает секрецию желудочного сока;
  • · устройство в «горячих цехах» специально оборудованных комнат, кабин или мест для кратковременного отдыха, в которые подается очищенный и умеренно охлажденный воздух;
  • · для предупреждения переохлаждения и простудных заболеваний работающих у входа в цех устраивают тамбуры или создают воздушные тепловые завесы, которые направляют поток холодного наружного воздуха в верхнюю зону помещения. Для работающих длительное время на холоде предусматривают специально оборудованные помещения для периодического обогрева.

Для обеспечения нормативных микроклиматических условий в холодный период года производственные и административно-бытовые помещения должны оборудоваться системами отопления.

Отопление. Отопление проектируется для обеспечения в помещениях расчетной температуры воздуха, которая принимается в зависимости от периода года. Для холодного периода года расчет отопления производится с учетом обеспечения минимальной из допустимых температур. В общественных, административно-бытовых и производственных помещениях отапливаемых зданий, когда они не используются, и в нерабочее время следует принимать температуру воздуха ниже нормируемой, но не ниже 5 °С, обеспечивая восстановление нормируемой температуры к началу использования помещения или к началу работы без увеличения приведенных затрат.

На постоянных рабочих местах в помещениях пультов управления технологическими процессами необходимо принимать расчетную температуру воздуха 22 °С и относительную влажность не более 60% в течение всего года.

Отопление, вентиляция и кондиционирование воздуха производственных и вспомогательных помещений регламентируются одноименным СНБ 4.02.01-03, ГОСТ 12.4.021, ГОСТ 12.2.137, МОПОТ и другими документами.

Для производственного отопления используются специальные системы.

Система отопления - это комплекс конструктивных элементов, предназначенных для получения, переноса и подачи необходимого расчетного количества теплоты в обогреваемые помещения.

Каждая система отопления состоит из генератора теплоты, нагревательных приборов для передачи теплоты отапливаемому помещению и теплопровода - сети труб или каналов для переноса теплоты от генератора к отопительным приборам.

По месту размещения генератора теплоты относительно отапливаемых помещений системы отопления могут быть местными и центральными.

К местным системам относят такие, в которых генератор теплоты, нагревательные приборы и теплопроводы находятся непосредственно в отапливаемом помещении и конструктивно объединены в одной установке (печное, воздушное, панельное (лучистое), а также отопление местными газовыми, электрическими приборами или котлами, работающими на различных видах топлива).

При панельном (лучистом) отоплении нагревательные приборы либо совмещены с ограждающими конструкциями (т.е. находятся в междуэтажных перекрытиях, стенах, перегородках), либо расположены свободно в виде плоских панелей, плафонов, излучателей. В качестве теплоносителя используется вода с температурой 50-60 °С, нагретый воздух и реже пар. Иногда используются электронагревательные элементы. Преимуществами этой системы являются: большая равномерность нагрева и постоянство температуры и влажности воздуха в помещении, отсутствие нагревательных приборов, возможность охлаждения помещений в летнее время пропусканием холодной воды (или воздуха) через систему. Основные недостатки - относительно большие первоначальные затраты на устройство и сложность ремонта во время эксплуатации.

К системам центрального отопления относятся такие, в которых генераторы теплоты расположены вне отапливаемых помещений, т.е. отдалены от нагревательных приборов. Теплоноситель нагревается в генераторе, находящемся в тепловом центре (ТЭЦ, котельная), перемещается по теплопроводам в обогреваемые здания и помещения и, передав теплоту через нагревательные приборы, возвращается в тепловой центр.

Центральные системы отопления бывают водяными, паровыми, воздушными и комбинированными.

Водяная и паровая системы отопления в зависимости от давления теплоносителя могут быть низкого давления (давление пара до 70 кПа или температура воды до 100 °С) и высокого давления (давление пара выше 70 кПа или температура воды свыше 100 °С). Системы водяного отопления подразделяются на низкотемпературные - с предельной температурой горячей воды 85-100 °С и высокотемпературные - с температурой воды более 105 °С.

Водяное отопление низкого давления наиболее широко используется на промышленных предприятиях, так как позволяет централизованно регулировать температуру теплоносителя, поддерживать температуру воздуха и относительную влажность в помещениях в заданных пределах, исключает возможность ожогов работающих об нагревательные приборы, обеспечивает пожарную безопасность. Основным недостатком системы является возможность ее замерзания в зимнее время, а также медленный нагрев больших помещений после продолжительного перерыва в работе.

В паровом отоплении теплоносителем является водяной пар (влажный, насыщенный). В зависимости от рабочего давления оно делится на системы низкого, высокого давления и вакуум-паровые. По устройству паровые системы отопления не отличаются от водяных.

Паровое отопление имеет ряд существенных недостатков по сравнению с водяным: трудность регулировки подачи пара в отопительную систему, что приводит к резким колебаниям температуры в отапливаемых помещениях; опасность возникновения пожаров и ожогов о нагревательные приборы; вероятность резкого снижения относительной влажности воздуха за счет его перегрева и т.п.

Воздушное отопление по способу подачи теплого воздуха подразделяется на центральное - с подачей нагретого воздуха от единого теплогенератора и местное - с подачей теплого воздуха местными отопительными агрегатами.

Нагретый до 70 °С воздух должен подаваться на высоту не менее 3,5 м от уровня пола, а воздух, нагретый до 45 °С, - на расстояние не менее 2,5 м от рабочих мест. Основные преимущества центрального воздушного отопления следующие: немедленный обогрев помещения при включении системы отопления; отсутствие в помещении нагревательных приборов; возможность использования в летнее время для охлаждения и вентиляции помещений; экономичность, особенно если это отопление совмещено с общеобменной вентиляцией. Устройство и эксплуатация воздушного отопления значительно экономичнее других систем.

Кондиционирование воздуха. Наиболее современным способом обеспечения оптимальных параметров микроклимата в помещениях является кондиционирование воздуха. В соответствии с СНВ 4.02.01-03 кондиционирование воздуха - это автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения) с целью обеспечения, главным образом, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, сохранения ценностей культуры.

В общем случае под кондиционированием понимается нагревание или охлаждение, увлажнение или осушка воздуха и очистка его от пыли. Используются различные типы кондиционеров, которые в зависимости от расхода воздуха подразделяются на промышленные, полупромышленные и бытовые.

При низком качестве кондиционеров и несовершенной технологии их обслуживания в рабочих секциях возможно накопление микроорганизмов, в том числе и патогенных. В мировой и отечественной практике известны случаи, когда кондиционеры являлись источником инфекционных заболеваний людей. Поэтому в современных кондиционерах предусмотрена реализация дополнительных операций -- обеззараживания, дезодорации, ароматизации, ионизации воздуха и др.

Различают системы комфортного кондиционирования, обеспечивающие в помещении постоянные комфортные условия для человека, и системы технологического кондиционирования, предназначенные для поддержания в производственном помещении требуемых технологическим процессом условий.

Аэроионизация воздуха. СанПиН 9-98-98 регламентируют основные требования по гигиене труда а промышленной санитарии при работе с источниками аэроионов, а также в помещениях, оборудованных системами кондиционирования воздуха.

Источниками аэроионизации воздуха могут быть природные явления (космические и другие излучения, грозы, выпадение осадков, естественный радиоактивный распад элементов и пр.), технологические процессы и оборудование (рентгеновское и ультрафиолетовое излучения, термоэмиссия, фотоэффект, наличие высоких уровней электрического напряжения в технологическом оборудовании и электрических цепях) и специальные устройства (искусственная ионизация), при воздействии которых на воздушную среду происходит образование электрически заряженных частиц (ионов).

Как правило, аэроионы концентрируются вблизи мест их образования, их много в горном, морском воздухе (5000-10 ООО ионов /см3), в лесах (1000-5000 ионов /см3), у водоемов, после дождя, снега, грозы. Для сравнения: в воздухе городской квартиры содержится всего 50--100 отрицательных ионов /см3.

Аэроионы повышают умственную и физическую работоспособность, снимают стресс, укрепляют нервную систему, повышают сопротивляемость организма инфекционным заболеваниям.

В биологическом отношении наиболее активны легкие аэроионы, при низком содержании которых отмечается ощущение духоты, головные боли, ослабление внимания, снижение других функциональных показателей организма. Повышенный уровень аэроионизации воздуха оказывает токсичеекое действие на организм человека и усиливает воздействие на него других вредных факторов.

Аэроионы характеризуются зарядом частиц и их подвижностью. Различают отрицательные и положительные аэроионы.

Санитарные правила регламентируют в воздушной среде помещений производственных и общественных зданий уровни аэроионизации и содержания положительных и отрицательных аэроионов.

Минимально необходимый и максимально допустимый уровни определяют регламентированный интервал содержания аэроионов в воздухе помещений.

Для постоянных рабочих мест в общественных помещениях при наличии источников аэроионизации принимаются оптимальные значения, а для непостоянных рабочих мест и в производственных условиях концентрация аэроионов должна находиться в интервале от минимально необходимого до максимально допустимого уровней.

Технические средства нормализации или коррекции аэроионного режима помещений должны применяться в случаях, если условия пребывания персонала не удовлетворяют вышеуказанным требованиям.

Для нормализации аэроионного состава воздуха в помещениях используют приточно-вытяжную вентиляцию, групповые и индивидуальные ионизаторы воздуха, устройства автоматического регулирования ионного режима воздушной среды.

Искусственная аэроионизация воздуха производится специальными ионизаторами, например люстрами Чижевского, которые могут обеспечить в ограниченном объеме заданную концентрацию ионов определенной полярности.

При текущем санитарном надзоре измерения содержания аэроионов производятся не реже одного раза в год. Для этого используют приборы, принцип действия которых основан на измерении изменения потенциала на электродах стандартизованного конденсатора. В настоящее время промышленностью выпускаются портативные счетчики аэроионов МАС-01, САПФИР ЗК и др.

Кроме всего вышеизложенного производственные помещения должны обеспечиваться как естественной, так и механической вентиляцией.

Профилактика перегревания работающих в нагревающем мик­роклимате может быть осуществлена за счет:

Нормирования верхней границы внешней термической нагруз­ки на допустимом уровне применительно к 8-часовой рабочей смене;

Регламентации продолжительности воздействия нагревающей среды;

Использования специальных коллективных и индивидуальных средств защиты, направленных на уменьшение поступления теп­ла извне к поверхности тела человека и обеспечения за счет этого допустимого теплового состояния работающих;

Применения средств, направленных на повышение тепловой устойчивости организма, в том числе за счет адаптации к терми­ческой нагрузке, улучшения функционального состояния (витаминизация, рациональный питьевой режим, фармакологические средства и др.).

При работе в охлаждающем микроклимате должное тепловое состояние организма человека также может быть сохранено за счет регламентации времени работы. Период непрерывного пребывания работающих в охлаждающей производственной среде в зависимо­сти от температуры воздуха должен составлять 8, 6, 4, 2 или 1 ч.

Кроме того, для защиты от охлаждения рабочие должны быть снабжены комплектом специальной одежды для защиты от пони­женных температур.

В зимний и переходный периоды года необходимо защищать рабочие места в производственных помещениях от потоков хо­лодного воздуха, поступающих через двери, ворота устройством шлюзов, воздушных завес.

В помещениях больших размеров или на специальном транс­портном оборудовании (подъемные краны и др.) целесообразно облучение передней поверхности тела источником инфракрасного излучения малой интенсивности (0,3 - 0,5 кал/см 2 /мин) на месте работы. В тех случаях, когда подобные меры невозможны, следует устраивать обогреваемые помещения для периодического пребы­вания там работающих.

2.6. Производственный травматизм и вопросы охраны труда на промышленных предприятиях.

Под производственной травмой понимают повреждение, по­влекшее за собой нарушение анатомической целостности ткани (органа) или нарушение нормального функционирования органа или организма, внезапно возникшее на территории предприятия или учреждения под воздействием внешних факторов. К произ­водственным относятся все случаи травм при выполнении человеком порученной ему работы на территории предприятия, а так­же травмы, полученные в пути на работу и с работы.



Травмы могут быть вызваны механическими, термическими и химическими факторами.

К травмам относятся раны, ушибы, переломы костей, отрыв частей тела (пальцев, руки) и др.; ожоги и отморожения; пораже­ния электрошоком, химическими соединениями; кроме того, раз­рыв барабанной перепонки от воздействия интенсивного шума, электроофтальмия у электросварщиков и т.д.

Причины возникновения производственного травматизма де­лятся на две группы: организационно-технические и санитарно-гигиенические.

Организационно-техническими причинами могут быть: конструк­тивные недостатки оборудования с позиций техники безопаснос­ти, недостаточная механизация производственных процессов, от­сутствие или неисправное состояние оградительной техники, не­исправное состояние технологического оборудования и инстру­мента, неудовлетворительный инструктаж и обучение работаю­щих безопасным методам работы, неиспользование средств ин­дивидуальной защиты и др.

Причинами травматизма являются также неблагоприятные са­нитарно-гигиенические условия труда . К ним относятся производ­ственные факторы внешней среды, вредно действующие на организм: неблагоприятные условия производственного микроклима­та, недостаточное и нерациональное освещение, воздействие вы­сокого уровня шума и вибрации, наличие в воздухе производ­ственных помещений токсических веществ и др. Эти факторы мо­гут косвенно способствовать возникновению травм, вызывая у работающих понижение внимания, быстроты и четкости реакции, ухудшение видимости, утомление, болезненное состояние и т.д. В 2000 г. в РФ работали в условиях, не отвечающих санитарно-гигиеническим нормам в промышленности - 21,7 % работников, в строительстве - 10,1 %, на транспорте - 12,4 % и т.д.

В последние 10 лет в РФ число случаев производственного трав­матизма уменьшилось почти в три раза. Если в 1990 г. численность пострадавших составляла 432,4 тыс. чел.,то в 2000 г. - 151,8 тыс. чел.

В значительной мере снижение производственного травматиз­ма обусловлено существенным спадом производства в стране.

Для выяснения и изучения причин производственного травма­тизма здравпунктами и медико-санитарными частями предприя­тий осуществляется регистрация и учет всех травм как с потерей, так и без потери трудоспособности. Травмы с потерей трудоспо­собности регистрируются также администрацией производства.

Медико-санитарная часть должна ежемесячно проводить ана­лиз травматизма и представлять его администрации для выработ­ки действенных мер профилактики.

К числу радикальных мер профилактики производственного травматизма относятся механизация и автоматизация производ­ства, внедрение современных технологий.

Не меньшее значение имеют правильная организация труда, рабочего места, исправность оборудования и инструмента, в не­обходимых случаях - обязательное использование надежных ограж­дений движущихся опасных частей оборудования или экранов для защиты станочника от отлетающей стружки.

Большую роль в профилактике травматизма играет постоянное использование спецодежды, спецобуви, защитных очков и других средств индивидуальной защиты.

Очень важно повышение квалификации работающих, хорошее знание ими правил безопасности работы.

Действенной мерой профилактики является пропаганда меро­приятий по борьбе с травматизмом.

Огромное значение имеет технический надзор за выполнением мероприятий по технике безопасности, который ежедневно осу­ществляется начальниками цехов, участков, мастерами.

Снижению травматизма способствует улучшение санитарных условий труда (обеспечение оптимальной освещенности, сниже­ние уровней шума, улучшение микроклимата на производстве и пр.).

Необходима правильная организация медицинского обслужи­вания пострадавших при производственных травмах для макси­мального ускорения восстановления здоровья рабочих и преду­преждения у них осложнений и инвалидности.

Трудовое законодательство в России охватывает все основные правовые нормы, касающиеся рабочего времени, охраны труда женщин, лиц пожилого возраста, подростков, техники безопасности на производстве и т.д.

Контрольные вопросы:

  • Физические факторы воздуха, формирующие микроклимат на производстве? Их гигиеническое значение?
  • Пути передачи тепла. Механизмы терморегуляция человека?
  • Перегревающий и охлаждающий микроклимат? Патофизиология и клинические проявления?
  • Классификация и характеристика микроклиматических условий труда?
  • Нормирование микроклимата на производстве лечебно-профилактических учреждениях?

· Методы по улучшению производственного микроклимата.

Для создания оптимального производственного микроклимата осуществляется с использованием технологических, санитарно-технических и медико-профилактических мероприятий. В профилактике вредного влияния высоких температур инфракрасного излучения ведущая роль принадлежит технологическим мероприятиям: замена старых и внедрение новых технологических процессов и оборудования, автоматизация и механизация процессов, дистанционное управление.

К группе санитарно-технических мероприятий относятся средства локализации тепловыделений и теплоизоляции, направленные на снижение интенсивности теплового излучения и тепловыделений от оборудования. Эффективными средствами снижения тепловыделений являются покрытие нагревающихся поверхностей и парогазотрубопроводов теплоизоляционными материалами (стекловата, асбестовая мастика, асботермит и др.); герметизация оборудования; применение отражательных, теплопоглотительных и теплоотводящих экранов; устройство вентиляционных систем; использование индивидуальных средств защиты.

К медико-профилактическим мероприятиям относятся: организация рационального режима труда и отдыха; обеспечение питьевого режима; повышение устойчивости к высоким температурам путем использования фармакологических средств (прием дибазола, аскорбиновой кислоты, глюкозы), вдыхания кислорода; прохождение предварительных при поступлении на работу и периодических медицинских осмотров .

Мероприятия по профилактике неблагоприятного воздействия холода должны предусматривать задержку тепла - предупреждение выхолаживания производственных помещений, подбор рациональных режимов труда и отдыха, использование средств индивидуальной защиты, а также мероприятия по повышению защитных сил организма. Для работающих длительное время на холоде людей предусмотрены социально оборудованные помещения для периодического отогрева. Источники повышенного влаговыделения с открытой поверхностью испарением (ванны, красильные и промывочные аппараты и другие емкости с водой и растворами) снабжают крышками или оборудуют местными отсосами.

Воздушное душирование применяют в горячих цехах на рабочих местах. Воздушный душ представляет собой направленный на рабочего поток воздуха, его действие основано на увеличении отдачи тепла человека при возрастании скорости обдувающего воздуха. Скорость обдува регламентирована СН 245-71 «Санитарные нормы проектирования промышленных предприятий» и составляет от 1 до 35 м/с в зависимости от интенсивности теплового облучения.

Воздушные занавесы используют для ограничения поступления холодного воздуха в помещение через часто открываемые двери и ворота. Воздух попадает через выпускные щели, максимально приближенные к плоскости проема. Завеса может быть и воздушно-тепловой, если воздух пред подачей нагревают.

Отопление. Система отопления может быть паровой, водяной, воздушной, совмещенной и кондиционированной.

Выбор системы отопления, а также допустимой температуры теплоносителя в системе отопления осуществляется в соответствии с категорией производства по взрывопожарной и пожарной опасности (СНиП 2.04.05-91 «Отопление, вентиляция, кондиционирование»).

Выбор системы отопления и параметров теплоносителя следует производить с учетом тепловой инерции ограждающих конструкций, характера и назначения зданий. При устройстве системы отопления потери теплоты должны составлять не более 10% от общего расхода ее на отопление.

Системы отопления должны: предусматривать равномерное нагревание воздуха помещения; быть безопасными в отношении взрыва и пожара и увязанными с системами вентиляции; обеспечивать уровень шума в пределах допустимых норм и минимально загрязнять вредными выделениями и неприятными запахами воздух помещений; быть удобными в эксплуатации и ремонте.

Температура теплоносителя в помещениях, относящихся к производствам категорий А, Б и В, не должна превышать 80% от предельной температуры самовоспламенения газов. Паров пыли, если возможно соприкосновение с горячими поверхностями оборудования и трубопроводов систем отопления, размещенными внутри рабочих помещений.

Вентиляция. Вентиляция - это организованный воздухообмен, регламентируемый СНиП 41-01-2003 (СНиП - Строительные нормы и правила) «Вентиляция. Отопление и кондиционирование» и ГОСТ 12.021-75 «Системы вентиляционные. Общие требования» .

Обеспечение нормальных метеорологических условий и чистоты воздуха на рабочих местах в значительной степени зависит от правильно организованной системы вентиляции .

Общие требования к системам вентиляции, кондиционирования воздуха и воздушного отопления производственных зданий и сооружений определены в СНиП 2.04.05 «Отопление, вентиляция, кондиционирование». Основное требование состоит в том, чтобы вентиляционные системы обеспечивали на рабочих местах, в производственной и обслуживаемых зонах помещений метеорологические условия и чистоту воздушной среды, соответствующие действующим санитарным нормам. Технические решения при проектировании вентиляционных систем, а так же требования, предъявляемые к ним при сооружении и эксплуатации, должны соответствовать строительным нормам и правилам.

По способу организации воздухообмена системы вентиляция разделяются на общеобменные, местные и комбинированные.

В общеобменных системах вентиляции смена воздуха происходит во всем объеме помещения, и их в основном применяют в производственных помещениях с небольшим и равномерным выделением вредных веществ.

Местные системы вентиляции предназначены для удаления вредных выделений (газов, паров, пыли, избыточной теплоты) в местах их непосредственного образования с последующим удалением из помещения. На устройство и эксплуатацию местной вентиляции требуется значительно меньше затрат.

Комбинированная вентиляция предусматривает одновременную работу местной и общеобменной систем.

В зависимости от способа перемещения воздуха вентиляция может быть естественной и механической. При естественной вентиляции воздух перемешается под влиянием естественных факторов - теплового напора или действия ветра. При механической вентиляции воздух направляют с помощью вентиляторов, эжекторов и т.д. сочетание естественной и искусственной вентиляции образует смешанную систему вентиляции.

Во всех помещениях должна быть естественная вентиляция. Естественное движение воздуха в помещении происходит вследствие перепада его плотности вне и внутри помещения (тепловое давление), а также перепада давления наружного воздуха с наветренной и подветренной сторон здания.

Рис. 1. Схема естественной вентиляции

Естественная вентиляция не требует значительных затрат, так как большие объемы воздуха поступают и удаляются из помещения без применения вентиляторов и воздухоотводов. Вентиляция происходит через вытяжные каналы, шахты, форточки и фрамуги зданий .