Магнитное поле соленоида при бесконечной длине. Вывод формул индукции поля соленоида, созданного переменным током

Для создания магнитного поля в технике используется соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на общий сердечник (рис. 4.5).

Рассмотрим соленоид длиной L , имеющий N витков, по которому течет ток I . Длину соленоида считаем во много раз большей диаметров его витков. Магнитное поле такого соленоида целиком сосредоточено внутри него и однородно. Снаружи соленоида поле мало и его практически можно считать равным нулю.

Величину индукции магнитного поля соленоида можно найти, складывая магнитные индукции полей, создаваемых каждым витком соленоида. Так как витки соленоида намотаны вплотную друг к другу, на длине dx сосредоточено витков. Суммарный ток, протекающий по кольцу, толщиной dx , равен . В точке, находящейся на оси соленоида каждое такое кольцо создает магнитное поле, согласно (4.7), равное:

.

Суммарное поле:

(4.9)

При интегрировании соленоид считаем бесконечным. Как видно из (4.9) магнитное поле соленоида зависит от плотности намотки – числа витков на единицу длины соленоида .

Магнитный поток

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная:

= В n dS = Bcos α × dS , (4.10)

где В n – проекция вектора В на направление, перпендикулярное к площадке dS ; α – угол между вектором нормали n и вектором В .

Положительное направление нормали связано правилом правого винта с током, текущим по контуру, ограничивающему площадку dS . Магнитный поток Ф через произвольную поверхность S можно представить в виде:

Действие магнитного поля на заряды



На электрический заряд q , движущийся в магнитном поле с индукцией В со скоростью V , действует сила Лоренца:

. (4.12)

Абсолютная величина магнитной силы:

F = qvB Sin α ,

где α – угол между векторами V и В .

По правилу векторного произведения магнитная сила F перпендикулярна плоскости, в которой лежат вектора V и B .

Если q >0, магнитная сила F совпадает с направлением векторного произведения [V,B ], если q <0, то противоположно.

Для положительного заряда, движущегося в магнитном поле, как показано на рисунке 4.6, сила F направлена вдоль отрицательного направления оси Z . Продольная компонента скорости V ll под действием магнитного поля изменяться не будет и движение заряженной частицы вдоль оси Х – равномерное. Результирующее движение частицы – по винтовой линии (рис.4.6). Спираль может быть как правой, так и левой в зависимости от знака заряда q .

Радиус спирали R найдем из условия, что при равномерном движении частицы по окружности сила F является центростремительной силой:

,

где m – масса заряженной частицы. Отсюда:

.

Время, за которое частица совершит полный оборот (период):

. (4.13)

Из формулы (4.13) следует, что период обращения частицы не зависит от ее скорости. Однако надо помнить, что этот вывод справедлив только при условии V <<c , где: с – скорость света.

Если движение частицы происходит как в магнитном поле с индукцией B , так и в электрическом поле с напряженностью Е , то на нее действует обобщенная сила Лоренца:

. (4.14)

Электромагнитная индукция

Если поток магнитной индукции сквозь контур изменяется со временем, то, согласно закону электромагнитной индукции Фарадея, в контуре возникает ЭДС индукции:

E = – , (4.15)

Знак (–) означает: индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле стремиться скомпенсировать то изменение магнитного потока, которым вызван данный индукционный ток (правило Ленца).

Ток в замкнутом контуре создает в окружающем пространстве магнитное поле, индукция которого пропорциональна току: В ~ I. Поэтому сцепленный с контуром магнитный поток пропорционален силе тока в контуре I:

Ф = LI ,

гдеL коэффициент пропорциональности называют коэффициентом самоиндукции или индуктивностью контура.

Если по контуру протекает изменяющийся со временем ток I(t) , то изменяется магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции:

Индуктивность контура L в общем случае зависит от геометрии контура и магнитной проницаемости среды µ. Если эти величины не изменяются, то L = const . Т.е., если контур жесткий и поблизости нет ферромагнетиков, то L = const .

Рассмотрим два контура 1 и 2, расположенных на некотором расстоянии друг от друга (рис. 4.7). Если по контуру 1 пропустить ток I 1 , то он создает поток магнитной индукции через контур 2:

Ф 21 = L 21 I 1 . (4.17)

Коэффициент пропорциональности L 21 называют коэффициентом взаимной индукции контуров (взаимная индуктивность контуров). Он зависит от формы и взаимного расположения контуров 1 и 2, а также от магнитных свойств окружающей среды.

При изменении силы тока в первом контуре магнитный поток сквозь второй контур изменяется; следовательно, в нем наводится ЭДС взаимной индукции:

. (4.18)

Формула справедлива в отсутствие ферромагнетиков.

Если поменять местами контуры 1 и 2 и повторить все предыдущие рассуждения, то получим:

. (4.19)

Коэффициенты взаимной индукции равны.

Лабораторная работа № 9

Изучение магнитного поля соленоида

1.Цель работы

Изучение распределения магнитного поля конечного соленоида при помощи явления электромагнитной индукции.

2.Краткое теоретическое введение

Соленоид – это цилиндрическая катушка, обмотка которой состоит из большого числа витков проволоки, образующих винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов, имеющих общую ось. Индукция магнитного поля в любой точке соленоида равно векторной сумме индукций магнитных полей, создаваемых в данной точке всеми витками. Вектор магнитной индукций в точке, лежащей на оси соленоида конечных размеров, направлен вдоль оси, а его значение вычисляется по формуле:

, (1)

где L - длина соленоида, R –радиус его витков,

Х – расстояние от края соленоида до исследуемой точки,

I – сила тока, протекающего по виткам,

n - число витков на единицу длина соленоида,

Относительная магнитная проницаемость среды,

μ0 - магнитная постоянная.

Единицей измерения индукции магнитного поля в системе СИ является «Тесла»: [B] = Тл

Из выражения (1) следует, что индукция магнитного поля максимальна на оси соленоида в точке, соответсвующей его середине:

. (2)

Если длина соленоида намного превышает радиус его витков, то соленоид можно условно считать бесконечно длинным. Магнитное поле внутри бесконечно длинного соленоида является однородным, при этом его индукция равна:

. (3)

Распределение магнитного поля соленоида конечной длины является более сложным по сравнению с простейшим случаем бесконечно длинного соленоида. Для многих других конфигураций магнитного поля, теоретический расчет которых затруднителен, предпочтительней определять магнитную индукцию экспериментально.

Величину можно измерить, использую, например, явление электромагнитной индукции. Если в некоторую точку магнитного поля поместить не большой контур, то при изменениях магнитного потока, пронизывающего этот контур, в последнем возникнет э. д.с., индукции, электромагнитной индукции (закону Фарадея), имеем:

В настоящей работе в качестве контура используется измерительная катушка (ИК), состоящая из большого количества витков N. Возникающая в ней э. д.с. индукции складывается из э. д.с. отдельных витков, т.е.

, (5)

где S –площадь поперечного сечения ИК.

Если в обмотке соленоида протекает переменный ток, то магнитное поле, создаваемое этим током, также является переменным, т. е.

, (6)

где В0 - амплитудное значение магнитной индукции,

– циклическая частота переменного тока.

Из формул (5) и (6) следует, что э. д.с. индукции, наведения ИК, изменяется во времени по закону:

e = e0 sin(wt) (7)

где e0 - амплитудное значение э. д.с., равное

e0 = NSwB0 = kB0 , (8)

Коэффициент называется градуировочной постоянной измерительной установки. Ее можно определить экспериментально.

Вольтметр, используемый для измерения э. д.с. индукции e, показывает эффективное значение переменного напряжения U, связанное с амплитудным значением э. д.с. (e0) соотношением:

https://pandia.ru/text/80/314/images/image011_30.gif" width="92" height="26"> . (10)

Из формул (9) и (10) следует, что отношение эффективного напряжения в любой точке нахождения ИК к его максимальному эффективному значению в центре соленоида равно отношению магнитной индукции в этой точке к максимальной магнитной индукции в центре соленоида:

. (11)

Поэтому распределение индукции магнитного поля соленоида можно изучать, не вычисляя градуировочную постоянную измерительной установки k.

3.Описание экспериментальной установки.

Внутри исследуемого соленоида при помощи стрежня с указателем, скользящим вдоль шкалы, может перемещаться измерительная катушка. Ось катушки параллельна оси соленоида. ИК можно передвигать и в направлении, перпендикулярном оси соленоида. Установка собирается по электрической схеме, приведенной на рис.1. Обмотка соленоида питается переменным током, измеряемым амперметром и изменяемым при помщи реостата. Э. д.с. индукции, возникающая в ИК, измеряется вольтметром. Это эффективное значение э. д.с. индукции, связанное с амплитудным значением индукции магнитного поля соленоида в точке нахождения ИК по формуле (9).

Измерения сводятся к фиксации координаты расположения ИК относительно соленоида и значения э. д.с. индукции, соответствующего этому положения.

4.Рабочее задание

Задание 4.1. Распределение индукции магнитного поля конечного соленоида.

4.1.1. Соберите электрическую цепь по схеме на рис.1

4.1.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.1.3. Изменяя положение ИК относительно соленоида, измерьте э. д.с. индукции. ИК следует перемещать вдоль оси соленоида 2 см, записывая для каждой координаты показания вольтметра в таблицу 4.1.

4.1.4..gif" width="84" height="45">, пользуясь расчетными формулами (1),(2). Сравните экспериментальную и теоретическую зависимости. Оцените систематическую погрешность проведенных измерений.

Таблица 4.1.

Задание 4.2. Зависимость величины магнитной индукции от силы тока в соленоиде.

4.2.1. Установите ИК в середине соленоида, где магнитное поле максимально.

4.2.2. Для разных значений тока в соленоиде измерьте э. д.с. индукции, наведенной в ИК. Для этих же значений тока рассчитайте значения магнитной индукции в центре конечного соленоида, пользуясь формулой (2). Результаты измерений и вычислений занесите в таблицу 4.2.

4.2.3. Постройте, желательно используя метод наименьших квадратов, график зависимости 0 " style="border-collapse:collapse;border:none">

Ток соленоида, Ic, A

Э. д.с. индукции

Индукция магнитного поля

Предел измерения

Показание прибора

Значение тока

Вmax, 10-3 Тл

Рис 1.Электрическая схема экспериментальной установки

Задание 4.3. Радиальное распределение индукции магнитного поля конечного соленоида.

4.3.1. Установите ИК на краю соленоида.

4.3.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.3.3. Передвигая Ик в направлении, перпендикулярном оси соленоида, измерьте э. д.с. индукции. ИК следует перемещать на 0,5 см, записывая для каждой координаты показания вольтметра в таблицу 4.3.

4.3.4. Зная значение градуировочной постоянной измерительной установки, вычислите по формуле (9) для каждой координаты значение индукции магнитного поля.

4.3.5. Постройте график зависимости В = f(х).

4.3.6. Установите ИК в центре соленоида.

4.3.7. Выполните для этого положения ИК задания п. п. 4.3.4.-4.3.6.

4.3.8. Перепишите в тетрадь следующие постоянные величины: длину соленоида, его диаметр, число его витков, длину измерительной катушки, ее диаметр, число ее витков.

Таблица 4.3.

В приложении приведена программа для обработки результатов лабораторной работы на ЭВМ. При вводе экспериментальных данных не забудьте перевести их в систему единиц СИ.

5.Контрольные вопросы

5.1. Что такое индукция магнитного поля?

5.2. Какие методы измерения магнитной индукции Вы знаете?

5.3. В чем заключается явление электромагнитной индукции?

5.4. Можно ли в данной работе использовать источник постоянного тока?

5.5. Какова природа возникновения э. д.с. индукции в ИК?

5.6. Выведите формулу индукции магнитного поля бесконечно длинного соленоида.

5.7. Чему равно отношение значений магнитной индукции внутри бесконечно длинного соленоида и на срезе полубесконечного соленоида?

5.8. Каков источник систематической погрешности?

6.Литература

6.1. Калашников.-М.:Наука, 1977.

6.2. Сивухин курс физики.-М.: Наука, 1977.

6.3. Матвеев и магнетизм. -М.: Высшая школа, 1991.

6.4. , Малов общей физики: Электричество и магнетизм.-М.: Просвещение, 1980.

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны в одном направлении (рис. 223). Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось.

На рис. 223 показаны четыре витка соленоида с током Для наглядности полувитки, расположенные за плоскостью листа, изображены прерывистыми линиями. На этом рисунке видно, что внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположные направления Поэтому при достаточно плотной намотке соленоида противоположно направленные участки силовых линий соседних витков взаимно

уничтожатся, а одинаково направленные участки сольются в общую замкнутую силовую линию, проходящую внутри всего соленоида и охватывающую его снаружи.

Детальное изучение магнитного поля длинного соленоида, проведенное с помощью железных опилок, показывает, что это поле имеет вид, изображенный на рис. 224. Внутри соленоида поле оказывается практически однородным, вне соленоида - неоднородным и сравнительно слабым (густота силовых линий здесь весьма мала).

Внешнее поле соленоида подобно полю стержневого магнита (см. рис. 212). Как и магнит, соленоид имеет северный С и южный полюсы и нейтральную зону.

Напряженность магнитного поля внутри длинного соленоида рассчитывается по формуле

где I - длина соленоида, число его витков, сила тока в нем. Произведение принято называть числом ампер-витков

Формула (18) является частным случаем выражения напряженности поля внутри соленоида конечной длины, которое в свою очередь выводится следующим образом.

На рис. 225 изображен продольный разрез соленоида вертикальной плоскостью, проходящей через его ось. Длина соленоида I, радиус его витков число витков сила тока, идущего по соленоиду,

Рассматривая соленоид как совокупность вплотную приложенных друг к другу витков (круговых токов имеющих общую ось, определим напряженность магнитного поля в точке А на оси соленоида как сумму напряженностей от всех его витков. Для этого выделим малый участок длины соленоида.

В нем содержится витков. Согласно формуле (17), напряженность поля одного витка Поэтому напряженность поля от участка будет равна

Из рис. 225 видно, что Тогда Подставляя эти выражения в

формулу (19) и производя сокращения, получим

Интегрируя последнее выражение в пределах от до найдем полную напряженность поля в точке А:

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l , имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида - неоднородным и очень слабым.

На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее,тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции В выберем замкнутый прямоугольный кон­тур ABCDA , как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA , охватывающему все N витков, согласно (118.1), равна

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA . На участках АВ и CD контур перпендикулярен линиям магнитной индукции и B l = 0. На участке вне соленоида B =0. На участке DA циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

(119.1)

Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био - Савара - Лапласа; в результате получается та же формула (119.2).

Важное значение для практики имеет также магнитное поле тороида - кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симмет­рии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r . Тогда, по теореме о циркуляции (118.1), B × 2p r =m 0 NI , откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N - число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B × 2p r = 0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

Магнитное поле соленоида представляет собой суперпозицию отдельных полей, которые создаются каждым витком в отдельности. Через все витки протекает один и тот же ток. Оси всех витков лежат на одной лини. Соленоид представляет собой катушку индуктивности, имеющую цилиндрическую форму. Эта катушка намотана из проводящей проволоки. При этом витки уложены плотно друг к другу и имеют одном направление. При этом считается, что длинна катушки значительно превышает диаметр витков.

Давайте рассмотрим магнитную индукцию, создаваемую каждым витком. Видно, что индукция внутри каждого витка направлена в одну и ту же сторону. Если смотреть в центр витка, то индукция от его краев будет складываться. При этом индукция магнитного поля между двух соседних витков направлена встречно. Так как она создана одним и тем же током то она компенсируется.

Рисунок 1 — Поле создаваемое отдельными витками соленоида

Если витки соленоида намотаны достаточно плотно, то между всеми витками встречное поле будет компенсировано, а внутри витков произойдет сложение отдельных поле в одно общее. Линии этого поля будут проходить внутри соленоида, и охватывать его снаружи.

Если исследовать магнитное поле внутри соленоида любыми способами, например, с помощью железных опилок то можно сделать вывод, что оно однородно. Лини магнитного поля в этой области представляют собой параллельные прямые. Мало того что они параллельны сами себе но они еще параллельны оси соленоида. Выходя за приделы соленоида, они искривляются и замыкаются снаружи катушки.

Рисунок 2 — Поле создаваемое соленоидом

Из рисунка видно, что поле создаваемое соленоидом похоже на поле, которое создает постоянный стержневой магнит. На одном конце силовые линии выходят из соленоида и этот конец аналогичен северному полюсу постоянного магнита. А в другой они входят, и этот конец соответствует южному полюсу. Отличие же заключается в том, что поле присутствует и внутри соленоида. И если провести опыт с железными опилками, то они втянутся в пространство между витками.

Но если внутрь соленоида вставить деревянный сердечник либо сердечник из любого другого немагнитного материала, то при проведении опыта с железной стружкой картина поля постоянного магнита и соленоида будет идентична. Так как деревянный сердечник не исказит силовые лини, но при этом не даст проникнуть опилкам внутрь катушки.

Рисунок 3 — Картина поля постоянного стержневого магнита

Для определения полюсов соленоида можно использовать несколько методов. Например, самый простой, использовать магнитную стрелку. Она притянется к противоположному полюсу магнита. Если же известно направление тока в витке полюсы можно определить при помощи правила правого винта. Если вращать головку правого винта в направлении тока, то поступательное движение укажет направление поля в соленоиде. А зная, что поле направлено от северного полюса к южному и можно определить, где какой полюс находится.