Гистерезис. Гистерезис магнитный: описание, свойства, практическое применение

Гистерезис является комплексным понятием процессов, происходящих в системах и веществах, которые способны в себе накапливать различную энергию, при этом скорость и интенсивность ее нарастания отличается от кривой ее убывания при снятии воздействия. В переводе же с греческого языка понятие гистерезис переводится как отставание, поэтому и понимать его следует как запаздывание одного процесса по отношению к другому. При этом совсем необязательно, чтобы эффект гистерезиса был характерен только магнитным средам.

Это свойство проявляется во многих других система и средах:

  • гидравлике;
  • кинематике;
  • электронике;
  • биологии;
  • экономике.

Особенно часто используют понятие при осуществлении регулирования температурных режимов в системах отопления.

Особенности физического явления

Мы же остановимся именно на гистерезисе в электронной технике , связанным с магнитными процессами в различных веществах. Он показывает, как себя ведет тот или другой материал в электромагнитном поле, а это тем самым позволяет строить графики зависимости и снимать какие-то показания сред, в которых находятся эти самые материалы. Например, этот эффект используется в работе терморегулятора.

Рассматривая более подробно понятие гистерезиса и эффект с ним связанный, можно заметить такую особенность. Вещество, обладающее такой особенностью, способно переходить в насыщение. То есть, это то состояние, при котором оно больше не способно накапливать в себе энергию. А при рассмотрении процесса на примере ферромагнитных материалов энергия выражается намагниченностью, которая возникает благодаря имеющейся магнитной связи между молекулами вещества. А они создают магнитные моменты – диполи, которые в обычном состоянии направлены хаотически.

Намагниченность в данном случае – это принятие магнитными моментами определенного направления. Если же они направлены хаотически, то ферромагнетик считается размагниченным. Но когда диполи направлены в одну сторону, то материал намагничен. По степени намагниченности сердечника катушки можно судить о величине магнитного поля, создаваемого током, протекающим по ней.

Физический процесс при гистерезисе

Чтобы подробно понять процесс гистерезиса , необходимо досконально изучить следующие понятия:

Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:

  • железо;
  • кобальт;
  • никель;
  • соединения на их основе.

Чтобы увидеть гистерезис , на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.

Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.

Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком . На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.

После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.

Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения . Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.

При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.

Гистерезис – это комплексное понятие , характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.

Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.

При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси , содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.

Что влияет на петлю гистерезиса?

Казалось бы, гистерезис – это больше внутренний эффект , который не виден на поверхности материала, но он сильно зависит не только от типа самого материала, но и от качества и вида его механической обработки. Например, железо переходит в насыщение при напряженности равной 1 э, а сплав магнико достигает своей критической точки только при 580 э. Чем больше дефектов на поверхности материала, тем требуется больше напряженность магнитного поля, чтобы вывести его в насыщение.

В результате намагничивания и размагничивания в материале выделяется тепловая энергия, которая равна площади петли гистерезиса. Также к потерям в ферромагнетике можно отнести действие вихревых токов и магнитной вязкости вещества. Это обычно наблюдается при изменении частоты магнитного поля в большую сторону.

В зависимости от характера поведения ферромагнетика в среде с магнитным полем, различают статический и динамический гистерезис . Первый наблюдается при номинальной частоте напряжения, но с ее ростом площадь графика увеличивается, что приводит и к росту потерь.

Другие свойства

Кроме магнитного гистерезиса, также различают гальвономагнитный и магнитострикционный эффекты . В этих процессах наблюдается изменение электрического сопротивления за счет механической деформации материала. Сегнетоэлектрики под действием деформационных сил способны вырабатывать электрический ток, что объясняется пьезоэлектрическим гистерезисом. Также существует понятие электрооптического и двойного диэлектрического гистерезиса. Последний процесс имеет обычно наибольший интерес, так как сопровождается двойным графиком в зонах, приближающихся к точкам насыщения.

Гистерезис определение относится не только к ферромагнетикам, применяемым в электронике. Такой процесс может происходить и в термодинамике . Например, при организации отопления от газового или электрического котла. Регулирующим компонентом в системе является терморегулятор. Но только контролируемой величиной является температура воды в системе.

При ее снижении до заданного уровня котел включается, начиная подогрев до заданной величины. После чего выключается и процесс повторяется в цикле. Если снять показания температуры при нагреве и остывании системы при каждом цикле включения и выключения отопления, то получиться график в виде петли гистерезиса, который и получил название гистерезис котла.

В таких системах гистерезис выражается в температуре . Например, если он составляет 4°С, а температура теплоносителя установлена 18°С, то котел выключится, когда она достигнет значения 22°С. Таким образом, можно настроить любой приемлемый температурный режим в помещениях. А терморегулятор является, по сути, датчиком температуры или термостатом, который включает или выключает отопления при достижении нижнего и верхнего порога, соответственно.

Гистерезис по определению, это свойство систем, которые не сразу следуют приложенным силам. Реакция этих систем зависит от сил, действовавших ранее, то есть системы зависят от собственной истории.

Рисунок 1. Классическая петля гистерезиса.

По пунктам:

  • казалось бы, что любая выявленная на широком интервале, аналитическая зависимость физических величин вида Y=f(X) при премещении из точки 0(условный ноль, для удобства) в точку 1 является хорошим описанием процесса
  • но, на самом деле, некоторые процессы всегда в одну сторону идут по одной кривой, а в другую по другой (сходясь в конечных точках) - напоминает ежедневный путь на работу и обратно верно?
  • эти явления и получили название явлений "классического гистерезиса" , к основным из которых относят:
    • магнитный гистерезис
    • сегнетоэлектрический гистерезис
    • упругий гистерезис
    • многие другие
  • мы же рассмотрим и явления классического гистерезиса и огромный класс явлений, которые, на первый взгляд, являются явлениями гистерезиса, но показывают совершенно самостоятельное поведение, назовем их "инженерный гистерезис"
  • подробные описания явлений классического гистерезиса широко доступны и не являются предметом рассмотрения

Что такое "инженерный гистерезис"? В отличие от классического гистерезиса "инженерный гистерезис" обусловлен не остаточными явлениями в системе при смене направления процесса, а резким изменением свойств системы в точках начала и конца процесса (например, при срабатывании автоматики, меняющем коммутацию/геометрию/логику и др. внутри системы).

Проиллюстрируем разницу. Рисунки 2 и 3 показывают полные кривые гистерезиса для классического и инженерного гистерезисов. При движении из точки 0 в точку 1 при отличий нет. Но!

Рассмотрим вопрос о том, как ведет себя система, обладающая гистерезисом по каким-то свойствам (характеристикам) в том случае, если процесс перемещения из точки начала процесса в точку конца будет прерван где-то посередине.

Обратите внимание! В классическом гистерезисе смена направления процесса образует новую петлю гистерезиса. В "инженерном гистерезисе" при недостижении крайних точек процесса ничего подобного не происходит. К чему это приведет?


Рисунок 4. Прерваный процесс на петле "инженерного гистерезиса".

  • Контрольный параметр Y для работы автоматики зависит от рабочего параметра Р, и на первый вид эта зависимость - гистерезис, хоть это и не так на самом деле
  • В зависимости от того, на каком из участков процесса находится рабочая точка сейчас эта зависимость носит различный характер
  • При аварии или обрыве питания, в зависимости от настроек работы системы "по умолчанию" для промежуточных точек между уровнями включения и выключения автоматики повторный запуск наверняка приведет к нештатным относительно контрольного параметра значениям рабочего параметра
  • Требуется определенное внимание инженера при перезапуске процесса к тому на каком из этапов процесса произошел сбой
  • Иногда требуются специальные решения для защиты логики системы от неверной интерпретации состояния системы
  • Проблема особенно характерна для систем с дискретным (релейным) регулированием, но не только для них
  • Данный процесс, строго говоря, вообще гистерезисом не является и употребление термина может вызывать недопонимание при общении с другими инженерами и, особенно, с инженерами-учеными
  • другое прочее

Различные ферромагнитные материалы обладают неодинаковой способностью проводить магнитный поток. Основной характеристикой ферромагнитного материала является петля магнитного гистерезиса В(Н) . Эта зависимость определяет значение магнитной индукции, которая будет возбуждена в магнитопроводе из данного материала при воздействии некоторой напряженности поля.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

Если процесс циклического перемагничивания повторять при разных амплитудных значениях тока (Н ), то получим семейство петель магнитного гистерезиса. При некотором максимальном значении тока, а значит Н max , площадь петли гистерезиса практически не увеличивается. Наибольшая по площади петля называется предельной петлей гистерезиса.

Кривая, соединяющая вершины петель - на рисунке жирная линия, называется основной кривой намагничивания.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B =f (H ) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса . Гистерезисом называют отставание изменения индукции от напряженности магнитного поля .

Симметричная петля гистерезиса, полученная при максимальной напряженности поля H m , соответствующей насыщению ферромагнетика, называется предельным циклом .

Для предельного цикла устанавливают также значения индукции B r при H = 0, которое называется остаточной индукцией , и значение H c при B = 0, называемое коэрцитивной силой . Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис.8а) называются магнитнотвердыми .

Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис.8а) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.


Свойства ферромагнитных материалов в переменных магнитных полях

При возбуждении переменного магнитного потока в магнитопроводах электротехнических устройств происходит непрерывное циклическое перемагничивание ферромагнитного материала.

В каждый момент времени магнитное состояние материала определяется точкой В (Н ) на симметричной петле (рис. 9), по конфигурации похожей на петлю магнитного гистерезиса. Получаемая при быстрых перемагничиваниях петля называется динамической петлей , и она отличается от статической петли магнитного гистерезиса, получаемой при медленных перемагничиваниях. Динамическая петля (показана пунктиром) шире статической.

В электротехнике есть разные приборы, принцип работы которых основан на электромагнитных явлениях. Где есть сердечник, на котором намотана катушка из проводящего материала, например, меди, наблюдаются взаимодействия за счёт магнитных полей. Это реле, пускатели, контакторы, электродвигатели и магниты. Среди характеристик сердечников есть такая характеристика как гистерезис. В этой статье мы рассмотрим, что это такое, а также какаие польза и вред от данного явления.

Определение понятия

У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.

Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.

Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.

Гистерезис в электротехнике

В электротехнике гистерезис — это важная характеристика для материалов, из которых изготавливаются сердечники электрических машин и аппаратов. Прежде чем приступать к объяснениям, давайте рассмотрим кривую намагничивания сердечника.

Изображение на графике подобного вида называют также петлей гистерезиса.

Важно! В данном случае речь идет о гистерезисе феромагнетиков, здесь это нелинейная зависимость внутренней магнитной индукции материала от величины внешней магнитной индукции, которая зависит от предыдущего состояния элемента.

При протекании тока через проводник вокруг последнего возникает магнитное и . Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё.

Отчего зависит гистерезис? Соответственно сердечник изготавливается из металла, от его типа зависят его характеристики и кривая намагничивания.

Если использовать, например, каленную сталь, то гистерезис будет шире. При выборе так называемых магнитомягких материалов — график сузится. Что это значит и для чего это нужно?

Дело в том, что при работе такой катушки в цепи переменного тока ток протекает то в одном, то в другом направлении. В результате и магнитные силы, полюса постоянно переворачивается. В катушке без сердечника это происходит в принципе одновременно, но с сердечником дела обстоят иначе. Он постепенно намагничивается, его магнитная индукция возрастает и постепенно доходит до почти горизонтального участка графика, который называется участком насыщения.

После этого, если вы начнете изменять направление тока и магнитного поля, сердечник должен будет перемагнитится. Но если просто отключить ток и тем самым убрать источник магнитного поля, сердечник все равно останется намагниченным, хоть и не так сильно. На следующем графике это точка «А». Чтобы его размагнитить до исходного состояния нужно создать уже отрицательную напряженность магнитного поля. Это точка «Б». Соответственно ток в катушке должен протекать в обратном направлении.

Значение напряженности магнитного поля для полного размагничивания сердечника называется коэрцитивной силой и чем она меньше, тем лучше в данном случае.

Перемагничивание в обратном направлении будет проходить аналогично, но уже по нижней ветви петли. То есть при работе в цепи переменного тока часть энергии будет затрачиваться на перемагничивание сердечника. Это ведёт к тому что КПД электродвигателя и трансформатора снижается. Соответственно это приводит к его нагреву.

Важно! Чем меньше гистерезис и коэрцитивная сила, тем меньше потери на перемагничивание сердечника.

Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания.

Гистерезис в электронике

В электронных устройствах гистерезис несёт в основном полезные функции. Допустим это используется в пороговых элементах, например, компараторах и триггерах Шмидта. Ниже вы видите график его состояний:

Это нужно в тех случаях, чтобы устройство сработало при достижении сигнала X, после чего сигнал может начать уменьшаться и устройство не отключилось до тех пор, пока сигнал не упадет до уровня Y. Такое решение используется для подавления дребезга контакта, и случайных всплесков, а также в различных регуляторах.

Например, термостат или регулятор температуры. Обычно его принцип действия заключается в том, чтобы отключить нагревательный (или охладительный) прибор в тот момент, когда температура в помещении или другом месте достигла заданного уровня.

Рассмотрим два варианта работы кратко и просто:

  1. Без гистерезиса. Включение и отключение при заданной температуре. При этом здесь есть нюансы. Если вы установили регулятор температуры на 22 градуса и обогреваете комнату до этого уровня, то как только в комнате будет 22 он выключится, а когда вновь опустится до 21 – включится. Это не всегда правильное решение, потому что ваш управляемый прибор будет слишком часто включаться и отключаться. К тому же в большинстве бытовых и многих производственных задачах нет нужды настолько четкой поддержки температуры.
  2. С гистерезисом. Чтобы сделать некий зазор в допустимом диапазоне регулируемых параметров применяют гистерезис. То есть, если вы установили температуру в 22 градуса, то, как только она будет достигнута, обогреватель отключится. Допустим, что гистерезис в регуляторе установлен на зазор в 3 градуса, то обогреватель вновь заработает только тогда, когда температура воздуха опустится до 19 градусов.

Иногда этот зазор регулируется на ваше усмотрение. В простых исполнениях используются биметаллические пластины.

Мы рассмотрели явление и применение гистерезиса в электрике. Итог следующий: в электроприводе и трансформаторах он несет пагубный эффект, а в электронике и разнообразных регуляторах находит и полезное применение. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

ГИСТЕРЕЗИС (от греческого?στ?ρησις - отставание, запаздывание), запаздывание изменения физической величины, характеризующей состояние вещества, от изменения другой физической величины, определяющей внешние условия. Гистерезис имеет место в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. В результате для циклического процесса (рост и уменьшение внешнего воздействия) получается петлеобразная (неоднозначная) диаграмма, которая называется петлёй гистерезиса. Возникает гистерезис в различных веществах и при разных физических процессах. Наибольший интерес представляют магнитный, сегнетоэлектрический и упругий гистерезис.

Магнитный гистерезис - неоднозначная зависимость намагниченности М магнитоупорядоченного вещества (магнетика, например, ферро- или ферримагнетика) от внешнего магнитного поля Н при его циклическом изменении (увеличении и уменьшении). Причиной существования магнитного гистерезиса является наличие в определённом интервале изменения Н среди состояний магнетика, отвечающих минимуму термодинамического потенциала, метастабильных состояний (наряду со стабильными) и необратимых переходов между ними. Магнитный гистерезис можно также рассматривать как проявление магнитных ориентационных фазовых переходов 1-го рода, для которых прямой и обратный переходы между фазами в зависимости от Н происходят, в силу указанной метастабильности состояний, при различных значениях Н.

На рисунке 1 схематически показана типичная зависимость М от Н в ферромагнетике; из состояния М = 0 при Н = 0 с увеличением Н значение М растёт (основная кривая намагничивания, а) и в достаточно сильном поле Н ≥ H m М становится практически постоянной и равной намагниченности насыщения M s . При уменьшении Н от значения Н m намагниченность изменяется вдоль ветви б и при Н = 0 принимает значение М = M R (остаточная намагниченность). Для размагничивания вещества (М = 0) необходимо приложить обратное поле Н = -Н с, называемое коэрцитивной силой. Далее при Н = -Н m образец намагничивается до насыщения (М = -M s) в обратном направлении. При изменении Н от -Н m до +Н m намагниченность изменяется вдоль кривой в. Ветви б и в, получающиеся при изменении Н от +Н m до -H m и обратно, образуют замкнутую кривую, называемую максимальной (или предельной) петлёй гистерезиса. Ветви б и в называются, соответственно, нисходящей и восходящей ветвями петли гистерезиса. При изменении Н на отрезке [-Н 1 , Н 1 ] с Н 1 <Н m зависимость М(Н) описывается замкнутой кривой (частной петлёй гистерезиса), целиком лежащей внутри максимальной петли гистерезиса.

Описанные петли гистерезиса характерны для достаточно медленных (квазистатических) процессов перемагничивания. Отставание М от Н при намагничивании и размагничивании приводит к тому, что энергия, приобретаемая магнетиком при намагничивании, не полностью отдаётся при размагничивании. Теряемая за один цикл энергия определяется площадью петли гистерезиса. Эти потери энергии называются гистерезисными. При динамическом перемагничивании образца переменным магнитным полем Н~ петля гистерезиса оказывается шире статической вследствие того, что к квазиравновесным гистерезисным потерям добавляются динамические, которые могут быть связаны с вихревыми токами (в проводниках) и релаксационными явлениями.

Форма петли гистерезиса и наиболее важные характеристики магнитного гистерезиса (гистерезисные потери, Н с, M R и др.) зависят от химического состава вещества, его структурного состояния и температуры, от характера и распределения дефектов в образце, а следовательно, от технологии его приготовления и последующих физических обработок (тепловой, механической, термомагнитной и др.). С магнитным гистерезисом связано гистерезисное поведение целого ряда других физических свойств, например гистерезис магнитострикции, гистерезис гальваномагнитных и магнитооптических явлений и так далее.

Сегнетоэлектрический гистерезис - неоднозначная зависимость величины вектора электрической поляризации Р сегнетоэлектриков от напряжённости Е внешнего электрического поля при циклическом изменении последнего. Сегнетоэлектрики обладают в определённом температурном интервале спонтанной (т. е. самопроизвольной, возникающей в отсутствие внешнего поля) поляризацией Р сп. Направление поляризации может быть изменено электрическим полем, при этом значение Р при данном Е зависит от предыстории, т. е. от того, каким было электрическое поле в предшествующие моменты времени. Сегнетоэлектрический гистерезис имеет вид характерной петли (петля гистерезиса), основными параметрами которой являются остаточная поляризация Р ост при Е= 0 и коэрцитивное поле Е к, при котором происходит изменение направления (переключение) вектора Р сп. Для совершенных монокристаллов петля гистерезиса имеет форму, близкую к прямоугольной, и Р ОСТ = Р СП. В реальных кристаллах остаточная поляризация меньше спонтанной из-за разбиения кристалла на домены.

Существование сегнетоэлектрического гистерезиса следует из феноменологической теории сегнетоэлектрических явлений, в соответствии с которой равновесным значениям Р сп при любой температуре ниже температуры сегнетоэлектрического фазового перехода отвечают два симметричных минимума термодинамического потенциала, разделённые потенциальным барьером. При Е= + Е к один из минимумов исчезает, и кристалл оказывается в состоянии с определённым направлением вектора Р сп. При циклическом переключении спонтанной поляризации площадь петли гистерезиса определяет гистерезисные потери - количество энергии электрического поля, переходящей в теплоту. Величина коэрцитивного поля связана также с процессами зарождения и эволюции в электрическом поле сегнетоэлектрических доменов - областей кристалла с выделенным электрическим полем направлением вектора спонтанной поляризации.

Упругий гистерезис - неоднозначная зависимость механического напряжения от деформации упругого тела при циклическом приложении и снятии нагрузки. График зависимости напряжения σ от деформации ε отличается от отрезка прямой линии, соответствующей закону Гука, и представляет собой петлю гистерезиса (рис. 2).

Площадь этой петли пропорциональна механической энергии, которая рассеялась (превратилась в теплоту) во время цикла.

Появление упругого гистерезиса в металлах связано с тем, что в некоторых зёрнах поликристалла микронапряжения существенно превышают средние напряжения в образце, что приводит к появлению пластических деформаций и тем самым к рассеянию механической энергии. В некоторых случаях вклад в упругий гистерезис дают электромагнитные явления.

Упругий гистерезис как проявление отличия реального упругого тела от идеально упругого наблюдается у всех твёрдых тел, даже при весьма низких температурах. Упругий гистерезис является причиной затухания свободных колебаний упругих тел, затухания в них звука, уменьшения коэффициента восстановления при неупругом ударе и др. В общем случае отклонение упругости от идеальной включается в понятие внутреннего трения.

Лит.: Ильюшин А. А., Ленский В. С. Сопротивление материалов. М., 1959; Постников В. С. Внутреннее трение в металлах. 2-е изд. М., 1974. Вонсовский С. В. Магнетизм. М., 1984; Филиппов Б. Н., Танкеев А. П. Динамические эффекты в ферромагнетиках с доменной структурой. М., 1987; Струков Б. А., Леванюк А. П. Физические основы сегнетоэлектрических явлений в кристаллах. М., 1995.

Б. Н. Филиппов, Б. А. Струков, В. Н. Кузнецов.