Эквипотенциальная поверхность. Определение расположения эквипотенциален и построение силовых линий электрических полей

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ.

Между напряженностью электрического доля и электрическим потенциалом существует интегральная и дифференциальная связь:

j 1 - j 2 = ∫ Е dl (1)

E = -grad j (2)

Электрическое поле может быть представлено графически двумя способами, дополняющими друг друга: с помощью эквипотенциальных поверхностей и ли­ний напряженности (силовых линий).

Поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Линия пересечения ее с плоскостью чертежа называется эквипотенциалью. Силовые линии - линии, касательные к которым в каждой точке совпадают с направлением вектора Е . На рисунке 1 пунктирными линиями показаны эквипотенциали, сплошными - силовые линии электрического поля.


Рис.1

Разность потенциалов между точками 1 и 2 равна 0, так как они находятся на одной эквипотенциали. В этом случае из (1):

∫Е dl = 0 или ∫Е dlcos ( Edl ) = 0 (3)

Поскольку Е и dl в выражении (3) не равны 0, то cos ( Edl ) = 0 . Следовательно, угол между эквипотенциалью и силовой линией составляет p/2.

Из дифференциальной связи (2) следует, что силовые линии всегда направлены в сторону убывания потенциала.

Величина напряженности электрического поля определяется «густотой» сило­вых линий. Чем гуще силовые линии, тем меньше расстояние между эквипотенциалями, так что силовые линии и эквипотенциали образуют "криволинейные квадраты". Исходя из этих принципов, можно построить картину силовых линий, располагая картиной эквипотенциалей, и наоборот.

Достаточно полная картина эквипотенциалей поля позволяет рассчитать в раз­ных точках значение проекции вектора напряженности Е на выбранное направ­ление х , усредненное по некоторому интервалу координаты ∆х :

Е ср. ∆х = - ∆ j /∆х,

где ∆х - приращение координаты при переходе с одной эквипотенциали на дру­гую,

j - соответствующее ему приращение потенциала,

Е ср. ∆х - среднее значение Е х между двумя потенциалами.

ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКА ИЗМЕРЕНИЙ.

Для моделирования электрического поля удобно использовать аналогию, су­ществующую между электрическим полем, созданным заряженными телами и электрическим полем постоянного тока, текущего по проводящей пленке с одно­родной проводимостью. При этом расположение силовых линий электрического поля оказывается аналогично расположению линий электрических токов.

То же утверждение справедливо для потенциалов. Распределение потенциалов поля в проводящей пленке такое же, как в электрическом поле в вакууме.

В качестве проводящей пленки в работе используется электропроводная бума­га с одинаковой во всех направлениях проводимостью.

На бумаге устанавливаются электроды так, чтобы обеспечивался хороший кон­такт между каждым электродом и проводящей бумагой.

Рабочая схема установки приведена на рисунке 2. Установка состоит из модуля II, выносного элемента I, индикатора III, источника питания IV. Модуль служит для подключения всех используемых приборов. Выносной элемент представляет собой диэлектрическую панель 1, на которую помещают лист белой бумаги 2, по­верх нее - лист копировальной бумаги 3, затем - лист электропроводящей бумаги 4, на котором крепятся электроды 5. Напряжение на электроды подается от моду­ля II с помощью соединительных проводов. Индикатор III и зонд 6 используются для определения потенциалов точек на поверхности электропроводящей бумаги.

В качестве зонда применяется провод со штекером на конце. Потенциал j зонда равен потенциалу той точки поверхности электропроводящей бумаги, которой он касается. Совокупность точек поля с одинаковым потенциалом и есть изображе­ние эквипотенциали поля. В качестве источника питания IV используется блок питания ТЕС – 42, который подключается к модулю с помощью штепсельного разъема на задней стенке модуля. В качестве индикатора Ш используется вольт­метр В7 – 38.



ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

1. Установить на панели 1 лист белой бумаги 2. На него положить копироваль­ную бумагу 3 и лист электропроводящей бумаги 4 (рис.2).

2. Установить на электропроводящей бумаге электроды 5 и закрепить гайками.

3. Подключить к модулю блок питания IV (ТЕС – 42) с помощью штепсельного разъема на задней стенке модуля.

4. С помощью двух проводников подключить индикатор III (вольтметр В7 – 38) к гнездам "PV" на лицевой панели модуля. Нажать соответствующую кнопку на вольтметре для измерения постоянного напряжения (рис.2).

5. С помощью двух проводников подключить электроды 5 к модулю П.

6. Подключить зонд (провод с двумя штекерами) к гнезду на лицевой панели модуля.

7. Подключить стенд к сети 220 В. Включить общее питание стенда.

Для наглядного представления векторных полей используют картину силовых линий. Силовая линия есть воображаемая математическая кривая в пространстве, направление касательной к которой в каждой точке, через которую она проходит, совпадает с направлением вектора поля в той же точке (рис. 1.17).
Рис. 1.17 :
Условие параллельности вектора E → и касательной можно записать в виде равенства нулю векторного произведения E → и элемента дуги d r → силовой линии:

Эквипотенциалью называют поверхность, на которой постоянна величина электрического потенциала ϕ . В поле точечного заряда, как показано на рис. , эквипотенциальными являются сферические поверхности с центров в месте расположения заряда; это видно из уравнения ϕ = q ∕ r = const .

Анализируя геометрию электрических силовых линий и эквипотенциальных поверхностей, можно указать ряд общих свойств геометрии электростатического поля.

Во-первых, силовые линии начинаются на зарядах. Они либо уходят на бесконечность, либо заканчиваются на других зарядах, как на рис. .


Рис. 1.19:

Во-вторых, в потенциальном поле силовые линии не могут быть замкнуты. В противном случае можно было бы указать такой замкнутый контур, что работа электрического поля при перемещении заряда по этому контуру не равна нулю.

В-третьих, силовые линии пересекают любую эквипотенциаль по нормали к ней. Действительно, электрическое поле всюду направлено в сторону скорейшего уменьшения потенциала, а на эквипотенциальной поверхности потенциал постоянен по определению (рис. ).
Рис. 1.20 :
И наконец, силовые линии нигде не пересекаются за исключением точек, где E → = 0 . Пересечение силовых линий означает, что поле в точке пересечения есть неоднозначная функция координат, а вектор E → не имеет определенного направления. Единственным вектором, который обладает таким свойством, является нулевой вектор. Структура электрического поля вблизи точки нуля будет проанализирована в задачах к ?? .

Метод силовых линий, конечно, применим для графического представления любых векторных полей. Так, в главе ?? мы встретим понятие магнитных силовых линий. Однако геометрия магнитного поля совершенно отлична от геометрии электрического поля.


Рис. 1.21 :
Представление о силовых линиях тесно связано с понятием силовой трубки. Возьмем какой-либо произвольный замкнутый контур L и через каждую точку его проведём электрическую силовую линию (рис. ). Эти линии и образуют силовую трубку. Рассмотрим произвольное сечение трубки поверхностью S . Положительную нормаль проведём в ту же сторону, в какую направлены силовые линии. Пусть N — поток вектора E → через сечение S . Нетрудно видеть, что если внутри трубки нет электрических зарядов, то поток N остаётся одним и тем же по всей длине трубки. Для доказательства нужно взять другое поперечное сечение S ′ . По теореме Гаусса, поток электрического поля через замкнутую поверхность, ограниченную боковой поверхностью трубки и сечениями S , S ′ , равен нулю, так как внутри силовой трубки нет электрических зарядов. Поток через боковую поверхность равен нулю, так как вектор E → касается этой поверхности. Следовательно, поток через сечение S ′ численно равен N , но противоположен по знаку. Внешняя нормаль к замкнутой поверхности на этом сечении направлена противоположно n → . Если же направить нормаль в ту же сторону, то потоки через сечения S и S ′ совпадут и повеличине, и по знаку. В частности, если трубка бесконечно тонкая, а сечения S и S ′ нормальны к ней, то

E S = E ′ S ′ .

Получается полная аналогия с течением несжимаемой жидкости. В тех местах, где трубка тоньше, поле E → сильнее. В тех местах, где она шире, поле E → сильнее. Следовательно, по густоте силовых линий можно судить о напряженности электрического поля.

До изобретения компьютеров для экспериментального воспроизведения силовых линий брали стеклянный сосуд с плоским дном и наливали в него жидкость, не проводящую электрически ток, например, касторовое масло или глицерин. В жидкости равномерно размешивали истертые в порошок кристаллики гипса, асбеста или какие-либо другие продолговатые частицы. В жидкость погружали металлические электроды. При соединении с источниками электричества, электроды возбуждали электрическое поле. В этом поле частицы электризуются и, притягиваясь друг к другу разноименно наэлектризованными концами, располагаются в виде цепочек вдоль силовых линий. Картина силовых линий искажается течениями жидкости, вызываемыми силами, действующими на неё в неоднородном электрическом поле.

To Be Done Yet
Рис. 1.22 :
Лучшие результаты получаются по методу, применявшемуся Робертом В. Полем (1884-1976). На стеклянную пластинку наклеиваются электроды из станиоля, между которыми создается электрическое напряжение. Затем на пластинку насыпают, слегка постукивая по ней, продолговатые частички, например, кристаллики гипса. Они располагаются по ней вдоль силовых линий. На рис. ?? изображена полученная таким образом картина силовых линий между двумя разноименно заряженными кружками из станиоля.

▸ Задача 9.1

Записать уравнение силовых линий в произвольных ортогональных координатах.

▸ Задача 9.2

Записать уравнение силовых линий в сферических координатах.

Найдем взаимосвязь между напряженностью электростатического поля, являющейся его силовой характеристикой, и потенциалом - энергетической характеристикой поля. Работа по перемещению единичного точечного положительного заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и x 1 – x 2 = dx, равна E x dx. Та же работа равна j 1 -j 2 = dj. Приравняв оба выражения, можем записать

где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей y и z, можем найти вектор Е:

где i, j, k - единичные векторы координатных осей х, у, z.

Из определения градиента (12.4) и (12.6). следует, что

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала электростатического поля, как и в случае поля тяготения (см. § 25), пользуются эквипотенциальными поверхностями - поверхностями, во всех точках которых потенциал jимеет одно и то же значение.

Если поле создается точечным зарядом, то его потенциал, согласно (84.5),

Таким образом, эквипотенциальные поверхности в данном случае - концентрические сферы. С другой стороны, линии напряженности в случае точечного заряда - радиальные прямые. Следовательно, линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.

Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор Е всегда нормален к эквипотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим поверхностям.

Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности рас положены гуще, напряженность поля больше.

Итак, зная расположение линий напряженности электростатического поля, можно построить эквипотенциальные поверхности и, наоборот, по известному расположению эквипотенциальных поверхностей можно определить в каждой точке поля модуль и направление напряженности поля. На рис. 133 для примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного заряда (а) и заряженного металлического цилиндра, имеющего на одном конце выступ, а на другом - впадину (б).

Для более наглядного графического изображения полей, кроме линий напряжённости, используют поверхности равного потенциала или эквипотенциальные поверхности. Как следует из названия, эквипотенциальная поверхность – это такая поверхность, все точки которой имеют одинаковый потенциал. Если потенциал задан как функция x, y, z, то уравнение эквипотенциальной поверхности имеет вид:

Линии напряжённости поля перпендикулярны эквипотенциальным поверхностям.

Докажем это утверждение.

Пусть линия и силовая линия составляют некоторый угол (рис.1.5).

Переместим из точки 1 в точку 2 вдоль линии пробный заряд . При этом силы поля совершают работу:

. (1.5)

То есть работа перемещения пробного заряда вдоль эквипотенциальной поверхности равна нулю. Эту же работу можно определить и другим способом – как произведение заряда на модуль напряженности поля, действующего на пробный заряд, на величину перемещения и на косинус угла между вектором и вектором перемещения , т.е. косинус угла (см.рис.1.5):

.

Величина работы не зависит от способа её подсчёта, согласно (1.5) она равна нулю. Отсюда вытекает, что и, соответственно, , что и требовалось доказать.


Эквипотенциальную поверхность можно провести через любую точку поля. Следовательно, таких поверхностей может быть построено бесконечное множество. Условились, однако, проводить поверхности таким образом, чтобы разность потенциалов для двух соседних поверхностей была бы всюду одна и та же. Тогда по густоте эквипотенциальных поверхностей можно судить о величине напряжённости поля. Действительно, чем гуще располагаются эквипотенциальные поверхности, тем быстрее изменяется потенциал при перемещении вдоль нормали к поверхности.

На рис.1.6,а показаны эквипотенциальные поверхности (точнее, их пересечения с плоскостью чертежа) для поля точечного заряда. В соответствии с характером изменения эквипотенциальные поверхности при приближении к заряду становятся гуще. На рис.1.6,б изображены эквипотенциальные поверхности и линии напряжённости для поля диполя. Из рис.1.6 видно, что при одновременном использовании эквипотенциальных поверхностей и линий напряжённости картина поля получается особенно наглядной.


Для однородного поля эквипотенциальные поверхности, очевидно, представляют собой систему равноотстоящих друг от друга плоскостей, перпендикулярных к направлению напряжённости поля.

1.8. Связь между напряжённостью поля и потенциалом

(градиент потенциала)

Пусть имеется произвольное электростатическое поле. В этом поле проведём две эквипотенциальные поверхности таким образом, что они отличаются одна от другой потенциалом на величину (рис. 1.7)

Вектор напряжённости направлен по нормали к поверхности . Направление нормали совпадает с направлением оси x. Ось x , проведённая из точки 1, пересекает поверхность в точке 2.

Отрезок dx представляет собой кратчайшее расстояние между точками 1 и 2. Работа, совершаемая при перемещении заряда вдоль этого отрезка:

С другой стороны, эту же работу можно записать как:

Приравнивая эти два выражения, получаем:

где символ частной производной подчёркивает, что дифференцирование производиться только по x . Повторив аналогичные рассуждения для осей y и z , можем найти вектор :

, (1.7)

где – единичные векторы координатных осей x, y, z.

Вектор, определяемый выражением (1.7), называется градиентом скаляра φ . Для него наряду с обозначением применяется также обозначение . («набла») означает символический вектор, называемый оператором Гамильтона

Эквипотенциальные поверхности и силовые линии электростатического поля.

Хотелось бы иметь возможность наглядно представить себе электростатическое поле. Поле скалярного потенциала можно геометрически представить себе как совокупность эквипотенциальных поверхностей (в плоском случае - линий), или поверхностей уровня, как их называют математики:

Для каждой такой поверхности имеет место условие (в силу определения!):

(*)

Представим это условие в эквивалентной форме записи:

Здесь принадлежит рассматриваемой поверхности, вектор перпендикулярным элементу поверхности (скалярное произведение неравных нулю векторов равно нулю именно при этом условии). Мы имеем возможность определит единичный вектор нормали к рассматриваемому элементу поверхности:

Если вернуться к физике, заключаем, что вектор напряжённости электростатического поля перпендикулярен эквипотенциальной поверхности этого поля!

Математическое содержание понятия "градиент скалярного поля" :

Направление вектора - это направление, в котором функция возрастает наиболее быстро;

Это приращение функции на единице длины вдоль направления максимального возрастания.

Как построить эквипотенциальную поверхность?

Пусть эквипотенциальная поверхность, заданная уравнением (*), проходит через точку пространства с координатами (x,y,z ). Зададим произвольно малые смещения двух координат, например x=>x+dx и y=>y+dy. Из уравнения (*) определяем необходимое смещение dz , такое, чтобы конечная точка осталась на рассматриваемой эквипотенциальной поверхности. Таким способом можно "добраться" до нужной точки поверхности.

Силовая линия векторного поля .

Определение. Касательная к силовой линии совпадает по направлению с вектором, определяющим рассматриваемое векторное поле.

Вектор и вектор совпадают по направлению (т.е. параллельны друг другу), если

В координатной форме записи имеем:

Легко видеть, что справедливы соотношения:

К такому же результату можно придти, если записать условие параллельности двух векторов с помощью их векторного произведения:

Итак, имеем векторное поле . Рассмотрим элементарный вектор как элемент силовой линии векторного поля .

В соответствие с определением силовой линии должны выполняться соотношения:

(**)

Так выглядят дифференциальные уравнения силовой линии. Получить аналитическое решение этой системы уравнений удаётся в очень редких случаях (поле точечного заряда, постоянное поле и т.п.). Но построить графически семейство силовых линий несложно.

Пусть силовая линия проходит через точку с координатами (x,y,z ). Значения проекций вектора напряжённости на координатные направления в этой точке нам известны. Выберем произвольно малое смешение, например, х=>x+dx . По уравнениям (**) определяем требуемые смещения dy и dz . Так мы перешли в соседнюю точку силовой линии, Процесс построения можно продолжить.

NB! (Nota Bene!). Силовая линия не полностью определяет вектор напряжённости. Если на силовой линии задано положительное направление, вектор напряжённости может быть направлен либо в положительную, либо в отрицательную сторону (но по линии!). Силовая линия не определяет модуль вектора (т.е. его величину) рассматриваемого векторного поля.

Свойства введённых геометрических объектов: