A. Дифракционная решетка. Принцип действия дифракционной решетки

ДИФРАКЦИОННАЯ РЕШЁТКА, совокупность большого числа регулярно расположенных элементов (штрихов, щелей, канавок, выступов), на которых происходит дифракция света. Дифракционная решетка способна разлагать падающий на неё свет в спектр, поэтому она используется в спектральных приборах в качестве диспергирующего элемента. Обычно штрихи наносят на стеклянную или металлическую, плоскую или вогнутую поверхность. Штрихи с постоянным для данной решётки профилем повторяются через одинаковый промежуток d, называемый периодом дифракционной решетки. Различают пропускательные и отражательные дифракционные решетки, которые в зависимости от того, что изменяется - амплитуда или фаза световой волны, делятся на амплитудные и фазовые. Простейшая пропускательная амплитудная дифракционная решетка представляет собой ряд щелей в непрозрачном экране (рисунок 1, а), отражательная амплитудная дифракционная решетка - систему штрихов, нанесённых на плоское или вогнутое зеркало (рисунок 1, б). Фазовая дифракционная решетка может иметь вид профилированной стеклянной пластины (пропускательная дифракционная решетка, рисунок 1, в) или профилированного зеркала (отражательная дифракционная решетка, рисунок 1, г). В современных приборах применяются главным образом отражательные фазовые дифракционные решётки.

При падении монохроматического коллимированного пучка света с длиной волны λ под углом α на дифракционную решетку с периодом d (рисунок 2), состоящую из щелей шириной b, разделённых непрозрачными промежутками, происходит интерференция вторичных волн, исходящих из разных щелей. В результате после фокусировки на экране образуются максимумы интенсивности, положение которых определяется уравнением d(sin α + sin β) = mλ, где β - угол между нормалью к дифракционной решетке и направлением распространения дифракционного пучка (угол дифракции); m = 0, ±1, ±2, ±3, ... - число длин волн, на которое волна от некоторого элемента дифракционной решетки отстаёт от волны, исходящей от соседнего элемента решётки (или опережает её). Монохроматические пучки, относящиеся к разным значениям m, называются порядком спектра, а создаваемые ими изображения входной щели - спектральными линиями М 1 . Все порядки, соответствующие положительным и отрицательным m, симметричны относительно нулевого. Чем больше щелей имеет дифракционная решетка, тем уже и резче спектральные линии. Если на дифракционную решетку падает белый свет, то для каждой длины волны получится свой набор спектральных линий М 2 , то есть излучение будет разложено в спектры по числу возможных значений m. Относительная интенсивность линий определяется функцией распределения энергии от отдельных щелей.

Основными характеристиками дифракционной решетки являются угловая дисперсия и разрешающая способность. Угловая дисперсия dβ/dλ = m/dcos β характеризует степень углового разделения лучей с разной длиной волны. Разрешающая сила R дифракционной решетки, характеризующая минимальный интервал длин волн δλ, который может разделить данная дифракционная решетка, определяется выражением R = λ/δλ = mN = Nd(sin α + sin β)/λ (N - число штрихов решётки). При заданных углах разрешающую способность можно увеличить только за счёт увеличения ширины всей дифракционной решетки Nd. Область дисперсии дифракционной решетки, то есть величина спектрального интервала Δλ, в котором спектр данного порядка не перекрывается спектрами соседних порядков, удовлетворяет соотношению Δλ = λ/m.

Дифракционные решетки, используемые для работы в разных областях спектра, различаются размерами, формой, профилем штрихов, их частотой (от 6000 штрихов/мм в рентгеновской области до 0,25 штрихов/мм в инфракрасной). По способу изготовления дифракционные решетки делятся на нарезные (оригинальные), реплики (копии с оригинальных дифракционных решеток) и голографические. Оригинальные нарезные дифракционные решетки изготовляются с помощью специальной делительной машины с алмазным резцом, профиль которого определяет форму штриха. Изготовление реплик состоит в получении отпечатков дифракционной решетки на пластмассах с последующим нанесением на них отражающего металлического слоя. При изготовлении голографической дифракционной решетки на светочувствительном материале записывается интерференция двух когерентных лазерных пучков.

Дифракционные решетки используются не только в спектрографах. Они применяются в качестве селективно отражающих зеркал лазеров с перестраиваемой частотой излучения, а также в устройствах, обеспечивающих компрессию световых импульсов.

Для управления параметрами лазерного излучения используются фазовые решётки, представляющие собой регулярные области сжатий и разрежений в жидкостях или прозрачных твёрдых телах, сформированные путём возбуждения в них УЗ-волны.

Лит.: Борн М., Вольф Э. Основы оптики. 2-е изд. М., 1973; Лебедева В. В. Экспериментальная оптика. 3-е изд. М., 1994; Ахманов С. А., Никитин С. Ю. Физическая оптика. 2-е изд. М., 2004; Сивухин Д. В. Общий курс физики. 3-е изд. М., 2006. Т. 4: Оптика.

Дифракционной решеткой называется совокупность большого числа одинаковых, отстоящих друг от друга на одно и то же расстояние щелей (рис. 130.1). Расстояние d между серединами соседних щелей называется периодом решетки.

Расположим параллельно решетке собирательную линзу, в фокальной плоскости которой поставим экран. Выясним характер дифракционной картины, получающейся на экране при падении на решетку плоской световой волны (для простоты будем считать, что волна падает на решетку нормально). Каждая из щелей даст на экране картину, описываемую кривой, изображенной на рис. 129.3.

Картины от всех щелей придутся на одно и то же место экрана (независимо от положения щели, центральный максимум лежит против центра линзы). Если бы колебания, приходящие в точку Р от различных щелей, были некогерентными, результирующая картина от N щелей отличалась бы от картины, создаваемой одной щелью, лишь тем, что все интенсивности возросли бы в N раз. Однако колебания от различных щелей являются в большей или меньшей степени когерентными; поэтому результирующая интенсивность будет отлична от - интенсивность, создаваемая одной щелью; см. (129.6)).

В дальнейшем мы будем предполагать, что радиус когерентности падающей волны намного превышает длину решетки, так что колебания от всех щелей можно считать когерентными друг относительно друга. В этом случае результирующее колебание в точке Р, положение которой определяется углом , представляет собой сумму N колебаний с одинаковой амплитудой сдвинутых друг относительно друга по фазе на одну и ту же величину . Согласно формуле (124.5) интенсивность при этих условиях равна

(в данном случае роль играет ).

Из рис. 130.1 видно, что разность хода от соседних щелей равна Следовательно, разность фаз

(130.2)

где к - длина волны в данной среде.

Подставив в формулу (130.1) выражение (129.6) для и (130.2) для , получим

( - интенсивность, создаваемая одной щелью против центра линзы).

Первый множитель в (130.3) обращается в нуль в точках, для которых

В этих точках интенсивность, создаваемая каждой из щелбй в отдельности, равна нулю (см. условие (129.5)).

Второй множитель в (130.3) принимает значение в точках, удовлетворяющих условию

(см. (124.7)). Для направлений, определяемых этим условием, колебания от отдельных щелей взаимно усиливают друг друга, вследствие чего амплитуда колебаний в соответствующей точке экрана равна

(130.6)

Амплитуда колебания, посылаемого одной щелью под углом

Условие (130.5) определяет положения максимумов интенсивности, называемых главными. Число дает порядок главного максимума. Максимум нулевого порядка только один, максимумов 1-го, 2-го и т. д. порядков имеется по два.

Возведя равенство (130.6) в квадрат, получим, что интенсивность главных максимумов раз больше интенсивности создаваемой в направлении одной щелью:

(130.7)

Кроме минимумов, определяемых условием (130.4), в промежутках между соседними главными максимумами имеется добавочных минимумов. Эти минимумы возникают в тех направлениях, для которых колебания от отдельных щелей взаимно погашают друг друга. В соответствии с формулой (124.8) направления добавочных минимумов определяются условием

В формуле (130.8) к принимает все целочисленные значения, кроме N, 2N, ..., т. е. кроме тех, при которых условие (130.8) переходит в (130.5).

Условие (130.8) легко получить методом графического сложения колебаний. Колебания от отдельных щелей изображаются векторами одинаковой длины. Согласно (130.8) каждый из последующих векторов повернут относительно предыдущего на один и тот же угол

Поэтому в тех случаях, когда k не является целым кратным N, мы, пристраивая начало следующего вектора к концу предыдущего, получим замкнутую ломаную линию, которая делает к (при ) или оборотов, прежде чем конец N-го вектора упрется в начало 1-го. Соответственно результирующая амплитуда оказывается равной нулю.

Сказанное пояснено на рис. 130.2, на котором показана сумма векторов для случая и значений , равных 2 и

Между дополнительными минимумами располагаются слабые вторичные максимумы. Число таких максимумов, приходящееся на промежуток между соседними главными максимумами, равно . В § 124 было показано, что интенсивность вторичных максимумов не превышает интенсивности ближайшего главного максимума.

На рис. 130.3 приведен график функции (130.3) для Пунктирная кривая, проходящая через вершины главных максимумов, изображает интенсивность от одной щели, умноженную на (см. (130.7)). При взятом на рисунке отношений периода решетки к ширине щели главные максимумы 3-го, 6-го и т. д. порядков приходятся на минимумы интенсивности от одной щели, вследствие чего эти максимумы пропадают.

Вообще из формул (130.4) и (130.5) вытекает, что главный максимум порядка придется на минимум от одной щели, если будет выполнено, равенство: или Это возможно, если равно отношению двух целых чисел и s (практический интерес представляет случай, когда эти числа невелики).

Тогда главный максимум порядка наложится на минимум от одной щели, максимум порядка - на минимум и т. д., в результате чего максимумы порядков и т. д. будут отсутствовать.

Количество наблюдающихся главных максимумов определяется отношением периода решетки d к длине волны X. Модуль не может превысить единицу. Поэтому из формулы (130.5) вытекает, что

Определим угловую ширину центрального (нулевого) максимума. Положение ближайших к нему дополнительных минимумов определяется условием (см. формулу (130.8)). Следовательно, этим минимумам соответствуют значения равные Отсюда для угловой ширины центрального максимума получается выражение

(130.10)

(мы воспользовались тем, что ).

Положение дополнительных минимумов, ближайших к главному максимуму порядка, определяется условием: . Отсюда получается для угловой ширины максимума следующее выражение:

Введя обозначения можно представить эту формулу в виде

При большом числе щелей значение будет очень мало. Поэтому можно положить Подстановка этих значений в формулу (130.11) приводит к приближенному выражению

При это выражение переходит в (130.10).

Произведение дает длину дифракционной решетки. Следовательно, угловая ширина главных максимумов обратно пропорциональна длине решетки. С увеличением порядка максимума ширина возрастает.

Положение главных максимумов зависит от длины волны X. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разложатся в спектр, фиолетовый конец которого обращен к центру дифракционной картины, красный - наружу.

Таким образом, дифракционная решетка представляет собой спектральный прибор. Заметим, что в то время как стеклянная призма сильнее всего отклоняет фиолетовые лучи, дифракционная решетка, напротив, сильнее отклоняет красные лучи.

На рис. 130.4 изображены схематически порядков, даваемые решеткой при пропускании через нее белого света. В центре лежит узкий максимум нулевого порядка; у него окрашены только края (согласно (130.10) зависит от ). По обе стороны от центрального максимума расположены два спектра 1-го порядка, затем два спектра 2-го порядка и т. д. Положения красного конца спектра порядка и фиолетового конца спектра порядка определяются соотношениями

где d взято в микрометрах, При условии, что

спектры порядков частично перекрываются. Из неравенства получается, что Следовательно, частичное перекрывание начинается со спектров 2-го и 3-го порядков (см. рис. 130.4, на котором для наглядности спектры разных порядков смещены друг относительно друга по вертикали).

Основными характеристиками всякого спектрального прибора являются его дисперсия и разрешающая сила. Дисперсия определяет угловое или линейное расстояние между двумя спектральными линиями, отличающимися по длине волны на единицу (например, на 1 А). Разрешающая сила определяет минимальную разность длин волн , при которой две линии воспринимаются в спектре раздельно.

Угловой дисперсией называется величина

где - угловое расстояние между спектральными линиями, отличающимися по длине волны на .

Чтобы найти угловую дисперсию дифракционной решетки, продифференцируем условие (130.5) главного максимума слева по а справа по . Опуская знак минус, получим

В пределах небольших углов поэтому можно положить

Из полученного выражения следует, что угловая дисперсия обратно пропорциональна периоду решетки d. Чем выше порядок спектра , тем больше дисперсия.

Линейной дисперсией называют величину

где - линейное расстояние на экране или на фотопластинке между спектральными линиями, отличающимися по длине волны на Из рис. 130.5 видно, что при небольших значениях угла можно положить , где - фокусное расстояние линзы, собирающей дифрагирующие лучи на экране.

Следовательно, линейная дисперсия связана с угловой дисперсией D соотношением

Приняв во внимание выражение (130.15), получим для линейной дисперсии дифракционной решетки (при небольших ) следующую формулу:

(130.17)

Разрешающей силой спектрального прибора называют безразмерную величину

где - минимальная разность длин волн двух спектральных линий, при которой эти линии воспринимаются раздельно.

Возможность разрешения (т. е. раздельного восприятия) двух близких спектральных линий зависит не только от расстояния между, ними (которое определяется дисперсией прибора), но также и от ширины спектрального максимума. На рис. 130.6 показана результирующая интенсивность (сплошные кривые), наблюдающаяся при наложении двух близких максимумов (пунктирные кривые). В случае а оба максимума воспринимаются как один. В случае между максимумами лежит минимум. Два близких максимума воспринимаются глазом раздельно в том случае, если интенсивность в промежутке между ними составляет не более 80% от интенсивности максимума. Согласно критерию, предложенному Рэлеем, такое соотношение интенсивностей имеет место в том случае, если середина одного максимума совпадает с краем другого (рис. 130.6, б). Такое взаимное расположение максимумов получается при определенном (для данного прибора) значении .

Таким образом, разрешающая сила дифракционной решетки пропорциональна порядку спектра и числу щелей .

На рис. 130.7 сопоставлены дифракционные картины, получающиеся для двух спектральных линий с помощью решеток, отличающихся значениями дисперсии D и разрешающей силы R. Решетки I к II обладают одинаковой разрешающей силой (у них одинаковое число щелей N), но различной дисперсией (у решетки I период d в два раза больше, соответственно дисперсия D в два раза меньше, чем у решетки II). Решетки II и III имеют одинаковую дисперсию (у них одинаковые d), но разную разрешающую силу (у решетки число щелей N и разрешающая сила R в два раза больше, чем у решетки III).

Дифракционные решетки бывают прозрачные и отражательные. Прозрачные решетки изготавливаются из стеклянных или кварцевых пластинок, на поверхность которых с помощью специальной машины наносится алмазным резцом ряд параллельных штрихов. Промежутки между, штрихами служат щелями.

Отражательные решетки наносятся алмазным резцом на поверхность металлического зеркала. Свет падает на отражательную решетку наклонно. При этом решетка с периодом d действует так, как при нормальном падении света действовала бы прозрачная решетка с периодом где - угол падения. Это позволяет наблюдать спектр при отражении света, например, от грампластинки, имеющей всего несколько штрихов (канавок) на 1 мм, если расположить ее так, чтобы угол падения был близок к Роуланд изобрел вогнутую отражательную решетку, которая сама (без линзы) фокусирует дифракционные спектры.

Лучшие решетки имеют до 1200 штрихов на 1 мм . Из формулы (130.9) следует, что спектры второго порядка в видимом свете при таком периоде не наблюдаются. Общее число штрихов у подобных решеток достигает 200 тысяч (длина около 200 мм). При фокусном расстоянии прибора длина видимого спектра 1-го порядка составляет в этом случае более 700 мм.

Дифракционная решетка — оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.

Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а ) и ее условное обозначение (б) показаны на рис. 19.12. Суммарную ширину щели а и промежутка б между щелями называют постоянной или периодом дифракционной решетки:

с = а + б. (19.28)

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 19.13). Выберем некоторое направление вторичных волн под углом a относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода d = А"В". Такая же разность хода будет для вторич-ных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие ÷А"В ¢÷= ± k l, или

с sin a = ± k l, (19.29)

где k = 0,1,2,... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, a = 0). Равенство (19.29) является основной формулой дифракционной решетки.

Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом a от соответственных тoчек соседних щелей, равна l/N, т. е.

d = с sin a= l/N, (19.30)

где N — число щелей дифракционной решетки. Этой разности хода 5 [см. (19.9)] отвечает разность фаз Dj= 2 p/N.

Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2 p/N, от третьей — 4 p/N, от четвертой — 6p/N и т. д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического поля, угол (разность фаз) между любыми соседними из которых есть 2 p/N, равна нулю. Это означает, что условие (19.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей d = 2(l/N) илиразности фаз Dj = 2(2p/N) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т. д.


В качестве иллюстрации на рис. 19.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: и т. д. — векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т. д. щелей. Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а ), 120° (б), 180° (в), 240° (г) и 300° (д).

Рис. 19.14

Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется N -1 добавочных минимумов, удовлетворяющих условию

с sin a = ± l/N ; 2l/N, ..., ± (N - 1)l/N. (19.31)

Между первым и вторым главными максимумами также расположены N - 1 добавочных минимумов, удовлетворяющих условию

с sin a = ± (N + 1)l/N, ± (N + 2)l/N, ..., (2N - 1)l/N, (19.32)

и т. д. Итак, между любыми двумя соседними главными максимумами наблюдается N - 1 добавочных минимумов.

При большом количестве щелей отдельные добавочные минимумы практически не различаются, а все пространство между главными максимумами выглядит темным. Чем больше число щелей дифракционной решетки, тем более резки главные максимумы. На рис. 19.15 представлены фотографии дифракционной картины, полученной от решеток с разным числом N щелей (постоянная дифракционной решетки одинакова), а на рис. 19.16 — график распределения интенсивности.

Особо отметим роль минимумов от одной щели. В направлении, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются условия минимума для щели (19.27) и главного максимума решетки (19.29), то соответствующий главный максимум не возникнет. Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале

arcsin (l/a ) > a > - arcsin (l/a ) (19.33)

При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра.

Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволяют оценивать возможность различения (разрешения) спектральных линий.

Одна из таких характеристик — угловая дисперсия — определяет угловую ширину спектра. Она численно равна угловому расстоянию da между двумя линиями спектра, длины волн которых различаются на единицу (dl. = 1):

D = da/ dl.

Дифференцируя (19.29) и используя только положительные значения величин, получаем

с cos a da = ..k dl.

Из последних двух равенств имеем

D = ..k /(c cos a). (19.34)

Так как обычно используют небольшие углы дифракции, то cos a » 1. Угловая дисперсия D тем выше, чем больше порядок k спектра и чем меньше постоянная с дифракционной решетки.

Возможность различать близкие спектральные линии зависит не только от ширины спектра, или угловой дисперсии, но и от ширины спектральных линий, которые могут накладываться друг на друга.

Принято считать, что если между двумя дифракционными максимумами одинаковой интенсивности находится область, где суммарная интенсивность составляет 80% от максимальной, то спектральные линии, которым соответствуют эти максимумы, уже разрешаются.

При этом, согласно Дж. У. Рэлею, максимум одной линии совпадает с ближайшим минимумом другой, что и считается критерием разрешения. На рис. 19.17 изображены зависимости интенсивности I отдельных линий от длины волны (сплошная кривая) и их суммарная интенсивность (штриховая кривая). Из рисунков легко увидеть неразрешенность двух линий (а ) и предельную разрешенность (б ), когда максимум одной линии совпадает с ближайшим минимумом другой.

Разрешение спектральных линий количественно оценивается разрешающей способностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены:

R = l./ Dl.. (19.35)

Так, если имеются две близкие линии с длинами волн l 1 ³ l 2 , Dl = l 1 - l 2 , то (19.35) можно приближенно записать в виде

R = l 1 /(l 1 - l 2), или R = l 2 (l 1 - l 2) (19.36)

Условие главного максимума для первой волны

с sin a = k l 1 .

С ним совпадает ближайший минимум для второй волны, условие которого

с sin a = k l 2 + l 2 /N.

Приравнивая правые части последних двух равенств, имеем

k l 1 = k l 2 + l 2 /N, k (l 1 - l 2) = l 2 /N,

откуда [с учетом (19.36)]

R = k N .

Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядок k спектра и число N штрихов.

Рассмотрим пример. В спектре, полученном от дифракционной решетки с числом щелей N = 10 000, имеются две линии вблизи длины волны l = 600 нм. При какой наименьшей разности длин волн Dl эти линии различаются в спектре третьего порядка (k = 3)?

Для ответа на этот вопрос приравняем (19.35) и (19.37), l/Dl = kN, откуда Dl = l/(kN ). Подставляя числовые значения в эту формулу, находим Dl = 600 нм/(3 . 10 000) = 0,02 нм.

Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм

Выведем формулу дифракционной решетки для наклонного падения когерентных лучей (рис. 19.18, b — угол падения). Условия формирования дифракционной картины (линза, экран в фокальной плоскости) те же, что и при нормальном падении.

Проведем перпендикуляры А"В кпадающим лучам и АВ" ко вторичным волнам, идущим под углом a к перпендикуляру, восставленному к плоскости решетки. Из рис. 19.18 видно, что к положению А¢В лучи имеют одинаковую фазу, от АВ" и далее разность фаз лучей сохраняется. Следовательно, разность хода есть

d = ВВ"-АА". (19.38)

Из D АА"В имеем АА¢ = АВ sin b = с sin b. Из DВВ"А находим ВВ" = АВ sin a = с sin a. Подставляя выражения для АА¢ и ВВ" в (19.38) и учитывая условие для главных максимумов, имеем

с (sin a - sin b) = ± kl. (19.39)

Центральный главный максимум соответствует направлению падающих лучей (a= b).

Наряду с прозрачными дифракционными решетками используют отражательные, у которых штрихи нанесены на металлическую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракционную картину без линзы.

В современных дифракционных решетках максимальное число штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значение N около миллиона.

Продолжая рассуждения для пяти, шести щелей и т. д., можно установить следующее правило: при наличии щелей между двумя соседними максимумами образуется минимумов; разность хода лучей от двух соседних щелей для максимумов должна равняться целому числу X, а для минимумов - Дифракционный спектр от щелей имеет вид, показанный на рис Дополнительные максимумы, расположенные между двумя соседними минимумами, создают на экране весьма слабую освещенность (фон).

Основная часть энергии световой волны, прошедшей через дифракционную решетку, перераспределяется между главными максимумами, образующимися в направлениях где 3, называется «порядком» максимума.

Очевидно, чем больше число щелей тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы.

Если свет, падающий на дифракционную решетку, состоит из двух монохроматических излучений с длинами волн и их главные максимумы расположатся в различных местах экрана. Для очень близких друг к другу длин волн (одноцветные излучения) максимумы на экране могут получиться настолько близко друг к другу, что сольются в одну общую светлую полосу (рис. IV.27, б). Если же вершина одного максимума совпадает или находится дальше (а) ближайшего минимума второй волны, то по распределению освещенности на экране можно уверенно установить наличие двух волн (или, как говорят, «разрешить» эти волны).

Выведем условие разрешимости двух волн: максимум (т. е. максимум порядка) волны получится, согласно формуле (1.21), под углом удовлетворяющим условию Предельное условие разрешимости требует, чтобы под этим же углом получился

минимум волны ближайшей к его максимуму (рис. IV.27, в). Согласно сказанному выше, для получения ближайшего минимума к разности хода следует прибавить дополнительно Таким образом, условие совпадения углов под которыми получаются максимум и минимум приводит к соотношению

Если больше, чем произведение числа щелей на порядок спектра то максимумы не будут разрешаться. Очевидно, если два максимума не разрешаются в спектре порядка, то они могут быть разрешены в спектре более высоких порядков. Согласно выражению (1.22), чем больше число интерферирующих между собой пучков и чем больше разность хода А между ними тем более близкие волны могут быть разрешены.

У дифракционной решетки т. е. число щелей, велико, но порядок спектра который можно использовать для измерительных целей, мал; у интерферометра Майкельсона, наоборот, число интерферирующих пучков равно двум, но разность хода между ними, зависящая от расстояний до зеркал (см. рис. IV. 14), велика, поэтому порядок наблюдаемого спектра измеряется очень большими числами.

Угловое расстояние между двумя соседними максимумами двух близких волн зависит от порядка спектра и периода решетки

Период решетки можно заменить на число щелей приходящихся на единицу длины решетки:

Выше предполагалось, что лучи, падающие на дифракционную решетку, перпендикулярны ее плоскости. При наклонном падении лучей (см. рис. IV.22, б) нулевой максимум будет смещен и получится в направлении Допустим, что максимум порядка получается в направлении т. е. разность хода лучей и равна Тогда Так как при малых углы

Близки друг к другу по величине, то следовательно,

где есть угловое отклонение максимума от нулевого. Сравним эту формулу с выражением (1.21), которую запишем в виде так как то угловое отклонение при наклонном падении оказывается больше, чем при перпендикулярном падении лучей. Это соответствует уменьшению периода решетки в а раз. Следовательно, при больших углах падения а можно получить дифракционные спектры от коротковолнового (например, рентгеновского) излучения и измерить их длины волн.

Если плоская световая волна проходит не через щели, а через круглые отверстия малого диаметра (рис. IV.28), то дифракционный спектр (на плоском экране, расположенном в фокальной плоскости линзы) представляет собой систему чередующихся темных и светлых колец. Первое темное кольцо получается под углом удовлетворяющим условию

У второго темного кольца На долю центрального светлого круга, называемого пятном Эйри, приходится около 85% всей мощности излучения, прошедшей через отверстие и линзу; остальные 15% распределяются между светлыми кольцами, окружающими это пятно. Размеры пятна Эйри зависят от и фокусного расстояния линзы.

Дифракционные решетки, которые рассматривались выше, состояли из чередующихся «щелей», полностью пропускающих световую волну, и «непрозрачных полосок», которые полностью поглощают или отражают падающее на них излучение. Можно сказать, что в таких решетках коэффициент пропускания световой волны имеет только два значения: на протяжении щели он равен единице, а на протяжении непрозрачной полоски - нулю. Поэтому на границе межд щелью и полоской коэффициент пропускания скачкообразно изменяется от единицы до нуля.

Однако можно изготовить дифракционные решетки и с другим распределением коэффициента пропускания. Например, если на прозрачную пластинку (или пленку) нанести поглощающий слой с периодически изменяющейся толщиной, то вместо чередования совершенно

прозрачных щелей и совершенно непрозрачных полосок можно получить дифракционную решетку с плавным изменением коэффициента пропускания (в направлении, перпендикулярном щелям или полоскам). Особый интерес представляют решетки, у которых коэффициент пропускания изменяется по синусоидальному закону. Дифракционный спектр таких решеток состоит не из множества максимумов (как это показано для обычных решеток на рис. IV.26), а только из центрального максимума и двух симметрично расположенных максимумов первого порядка

Для сферической волны можно изготовить дифракционные решетки, состоящие из множества концентрических кольцевых щелей, разделенных непрозрачными кольцами. Можно, например, на стеклянную пластинку (или на прозрачную пленку) нанести тушью концентрические кольца; при этом центральный круг, охватывающий центр этих колец, может быть либо прозрачным, либо затушеванным. Такие дифракционные решетки называются «зонными пластинками» или решетками. У дифракционных решеток, состоящих из прямолинейных щелей и полосок, для получения отчетливой интерференционной картины было необходимо постоянство ширины щели и периода решетки; у зонных пластинок для этой цели должны быть рассчитаны необходимые радиусы и толщины колец. Зонные решетки также могут быть изготовлены с плавным, например синусоидальным, изменением коэффициента пропускания вдоль радиуса.

Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.

Понятие дифракции

Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.

Понятие дифракционной решетки

Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.

Другой вариант этого устройства - совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических - только в отраженном.

Виды решёток

Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.

Принцип действия

Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.

Разрешающая способность дифракционной решетки

Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств - разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.

В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.

Применение дифракционных решеток

С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.

В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.

Изготовление

Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.

Современные дифракционные решетки для спектральных приборов

В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.

Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.