Нахождение экспоненты. Функции и графики

Одной из самых известных показательных функций в математике является экспонента. Она представляет собой число Эйлера, возведенное в указанную степень. В Экселе существует отдельный оператор, позволяющий её вычислить. Давайте разберемся, как его можно использовать на практике.

Экспонента является числом Эйлера, возведенным в заданную степень. Само число Эйлера приблизительно равно 2,718281828. Иногда его именуют также числом Непера. Функция экспоненты выглядит следующим образом:

где e – это число Эйлера, а n – степень возведения.

Для вычисления данного показателя в Экселе применяется отдельный оператор – EXP . Кроме того, эту функцию можно отобразить в виде графика. О работе с этими инструментами мы и поговорим далее.

Способ 1: вычисление экспоненты при помощи ручного ввода функции

EXP(число)

То есть, эта формула содержит только один аргумент. Он как раз и представляет собой степень, в которую нужно возвести число Эйлера. Этот аргумент может быть как в виде числового значения, так и принимать вид ссылки на ячейку, содержащую в себе указатель степени.


Способ 2: использование Мастера функций

Хотя синтаксис расчета экспоненты предельно прост, некоторые пользователи предпочитают применять Мастер функций . Рассмотрим, как это делается на примере.


Если в качестве аргумента используется ссылка на ячейку, которая содержит показатель степени, то нужно поставить курсор в поле «Число» и просто выделить ту ячейку на листе. Её координаты тут же отобразятся в поле. После этого для расчета результата щелкаем по кнопке «OK» .

Способ 3: построение графика

Кроме того, в Экселе существует возможность построить график, взяв за основу результаты, полученные вследствие вычисления экспоненты. Для построения графика на листе должны уже иметься рассчитанные значения экспоненты различных степеней. Произвести их вычисление можно одним из способов, которые описаны выше.

Функция Exp в Паскале (и многих других языках программирования) вычисляет экспоненту. Синтаксис:

function Exp(X: ValReal) : ValReal;

Функция Exp X вычисляет и возвращает экспоненту числа X.

Вычисление экспоненты - это вычисление числа е в степени X. То есть

Подробности см. в видео и читайте в статье далее.

Обратная функция Ln

Если вы помните , то вы также помните, что она вычисляет натуральный логарифм.

Так вот, обратной функцией Exp является функция Ln. Иными словами, обратная функция экспоненциальной функции (экспоненты) - это натуральный логарифм. То есть:

Log e (Y) = Ln (Y) = X

e X = Y = Exp (X)

e X = Exp(X) = Exp(Ln(Y)) = Y

Есть ещё вот такая полезная формула:

x Y = e Y ln(x) = Exp(Y * Ln(X))

Из этого следует, что используя функции Ln и Exp, мы можем возвести любое число в любую степень. Сделать это можно, например, так:

P:= Exp(Y * Ln(X))

Если описать это математическим языком, то приведённое выше выражение будет эквивалентно следующей записи:

Правда, надо сказать, что здесь есть нюансы. Есть частные случаи, когда приведённое выше выражение выдаст неправильный результат. Например, когда Y или X отрицательные числа, или когда они равны нулю. Такие ситуации надо обрабатывать дополнительно. Однако эта статья не о возведении в степень, поэтому мы будем рассматривать эти частные случаи в другой статье.

Пример исходного кода, где используется функция Exp:

program funcexp; uses Math; var x, y: single; begin y:= Exp(2); //y = Exp(2) = 7,39 WriteLn("Exp(2) = e * e = ", y:0:4); x:= Exp(3 * Ln(2)); //x = 2 в степени 3 WriteLn("2 ^ 3 = ", x:0:4); ReadLn; end.

y(x) = e x , производная которой равна самой функции.

Экспоненту обозначают так , или .

Число e

Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
е ≈ 2,718281828459045...

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел :
.

Также число e можно представить в виде ряда:
.

График экспоненты

График экспоненты, y = e x .

На графике представлена экспонента, е в степени х .
y(x) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

;
;
;

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y(x) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.