Закон преломления света. A. Лучи в призме

Монохроматический свет падает на грань АВ стеклянной призмы (рис. 16.28), находящейся в воздухе, S 1 O 1 - падающий луч, \(~\alpha_1\) - угол падения, O 1 O 2 - преломленный луч, \(~\beta_1\) - угол преломления. Так как свет переходит из среды оптически менее плотной в оптически более плотную, то \(~\beta_1<\alpha_1.\) Пройдя через призму, свет падает на ее грань АС . Здесь он снова преломляется\[~\alpha_2\] - угол падения, \(~\beta_2\) - угол преломления. На данной грани свет переходит из среды оптически более плотной в оптически менее плотную. поэтому \(~\beta_2>\alpha_2.\)

Грани ВА и СА , на которых происходит преломление света, называются преломляющими гранями . Угол \(\varphi\) между преломляющими гранями называется преломляющим углом призмы. Угол \(~\delta\), образованный направлением луча, входящего в призму, и направлением луча, выходящего из нее, называют углом отклонения . Грань, лежащая против преломляющего угла, называется основанием призмы .

Для призмы справедливы следующие соотношения:

1) Для первой преломляющей грани закон преломления света запишется так:

\(\frac{\sin \alpha_1}{\sin \beta_1}=n,\)

где n - относительный показатель преломления вещества, из которого сделана призма.

2) Для второй грани:

\(\frac{\sin \alpha_1}{\sin \beta_1}=\frac{1}{n}.\)

3) Преломляющий угол призмы:

\(\varphi=\alpha_2 + \beta_1.\)

Угол отклонения луча призмы от первоначального направления:

\(\delta = \alpha_1 + \beta_2 - \varphi.\)

Следовательно, если оптическая плотность вещества призмы больше, чем окружающей среды, то луч света, проходящий через призму, отклоняется к ее основанию. Несложно показать, что если оптическая плотность вещества призмы меньше, чем окружающей среды, то луч света после прохождения через призму отклонится к ее вершине.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 469-470.

Примененного к случаю падения луча из среды, в которой свет распространяется со скоростью ν 1 в среду, где свет распространяется со скоростью ν 2 >ν 1 следует, что угол преломления больше угла падения:

Но если угол падения удовлетворяет условию:

(5.5)

то угол преломления обращается в 90°, т. е. преломленный луч скользит по границе раздела. Такой угол падения называют предельным (α пр.). При дальнейшем увеличении угла падения проникновение луча в глубь второй среды прекращается и наступает полное отражение (рис. 5.6). Строгое рассмотрение вопроса с волновой точки зрения показывает, что в действительности волна проникает во вторую среду на глубину порядка длины волны.

Полное отражение находит различные практические применения. Так как для системы стекло- воздух предельный угол α пр составляет менее 45°, то призмы, показанные на рисунке 5.7, позволяют изменять ход луча, причем на рабочей границе отражение происходит практически без потерь.

Если ввести свет в тонкую стеклянную трубку с ее торца, то, испытывая на стенках полное отражение, луч будет следовать вдоль трубки даже при сложных изгибах последней. На этом принципе работают световоды - тонкие прозрачные волокна, позволяющие проводить световой пучок по искривленному пути.

На рисунке 5.8 показан отрезок световода. Луч, входящий в световод с торца под углом падения а, встречает поверхность световода под углом γ=90°-β, где β - угол преломления. Чтобы при этом возникло полное отражение, необходимо выполнение условия:

где n - показатель преломления вещества световода. Так как треугольник ABC прямоугольный, то получается:

Следовательно,

Полагая а→90°, находим:

Таким образом, даже при почти скользящем падении луч испытывает в световоде полное отражение, если выполнено условие:

В действительности световод набирается из тонких гибких волокон с показателем преломления n 1 окруженных оболочкой с показателем преломления n 2

Изучая явление преломления, Ньютон выполнил опыт, ставший классическим: узкий пучок белого света, направленный на стеклянную призму, дал ряд цветных изображений сечения пучка - спектр. Затем спектр попадал на вторую такую же призму, повернутую на 180° вокруг горизонтальной оси. Пройдя эту призму, спектр снова собрался в единственное белое изображение сечения светового пучка. Тем самым был доказан сложный состав белого света. Из этого опыта следует, что показатель преломления зависит от длины волны (дисперсия). Рассмотрим работу призмы для монохроматического света, падающего под углом α 1 на одну из преломляющих граней прозрачной призмы (рис. 5.9) с преломляющим углом А.

Из построения видно, что угол отклонения луча δ связан с преломляющим углом призмы сложным соотношением:

Перепишем его в виде

и исследуем на экстремум отклонение луча. Беря производную и приравнивая ее нулю, находим:

Отсюда следует, что экстремальное значение угла отклонения получается прй симметричном ходе луча внутри призмы:

Легко видеть, что при этом получается минимальный угол отклонения, равный:

(5.7)

Уравнение (5.7) применяется для определения показателя преломления по углу минимального отклонения.

Если призма имеет малый преломляющий угол, такой, что можно синусы заменить углами, получается наглядное соотношение:

(5.8)

Опыт показывает, что стеклянные, призмы сильнее преломляют коротковолновую часть спектра (синие лучи), но что нет прямой простой связи между λ, и δ min . Теорию дисперсии мы рассмотрим в главе 8. Пока для нас важно ввести меру дисперсии - разность показателей преломления двух определенных длин волн (одна из них берется в красной, другая - в синей части спектра):

Мера дисперсии для разных сортов стекла различна. На рисунке 5.10 изображен ход показателя преломления для двух распространенных сортов стекла: легкого - крона и тяжелого - флинта. Из чертежа видно, что меры дисперсии отличаются значительно.

Это дает возможность создать весьма удобную призму прямого зрения, где свет разлагается в спектр, почти не меняя направления распространения. Эта призма делается из нескольких (до семи) призм разного стекла с несколько различными преломляющими углами (рис. 5.10, внизу). За счет различной меры дисперсии добиваются хода луча, приблизительно показанного на рисунке.

В заключение отметим, что пропускание света через плоскопараллельную пластину (рис. 5.11) позволяет получить смещение луча параллельно самому себе. Значение смещения

зависит от свойств пластины и от угла, падения на нее первичного луча.

Разумеется, во всех рассмотренных случаях наряду с преломлением существует и отражение света. Но мы его не учитываем, так как преломление в этих вопросах считается основным явлением. Это замечание относится и к преломлению света на искривленных поверхностях различных линз.

Видеоурок 2: Геометрическая оптика: Законы преломления

Лекция: Законы преломления света. Ход лучей в призме


В тот момент, когда луч падает на некоторую другую среду, он не только отражается, но и проходит сквозь нее. Однако, из-за разности плотностей, он меняет свой путь. То есть луч, попадая на границу, изменяет свою траекторию распространения и двигается со смещением на некоторый угол. Преломление будет происходить в том случае, когда луч падает под некоторым углом к перпендикуляру. Если же он совпадает с перпендикуляром, то преломления не происходит и луч проникает в среду под таким же углом.


Воздух-Среда


Самой распространенной ситуацией при переходе света из одной среды в другую является переход из воздуха.


Итак, на рисунке АО - луч, падающий на границу раздела, СО и ОD - перпендикуляры (нормали) к разделам сред, опущенные из точки падения луча. ОВ - луч, который преломился и перешел в другую среду. Угол, находящийся между нормалью и падающим лучом, называется углом падения (АОС) . Угол, что находится между преломленным лучом и нормалью, называется углом преломления (ВОD) .

Чтобы выяснить интенсивность преломления той или иной среды, вводят ФВ, которая носит название показатель преломления. Данная величина является табличной и для основных веществ значение является постоянной величиной, которую можно найти в таблице. Чаще всего в задачах используются показатели преломления воздуха, воды и стекла.



Законы преломления для воздух-среда


1. При рассмотрении падающего и преломленного луча, а также нормали к разделам сред, все перечисленные величины находятся в одной плоскости.


2. Отношение синуса угла падения к синусу угла преломления является постоянной величиной, равной показателю преломления среды.

Из данного соотношения понятно, что значение показателя преломления больше единицы, это значит, что синус угла падения всегда больше синуса угла преломления. То есть, если луч выходит из воздуха в более плотную среду, то угол уменьшается.


Показатель преломления так же показывает, как изменяется скорость распространения света в той или иной среде, относительно распространения в вакууме:

Отсюда можно получить следующее соотношение:

Когда мы рассматриваем воздух, то можем делать некоторые пренебрежения - будем считать, что показатель преломления данной среды равен единице, тогда и скорость распространения света в воздухе будет равен 3*10 8 м/с.


Обратимость лучей


Данные законы применимы и в тех случаях, когда направление лучей происходит в обратном направлении, то есть из среды в воздух. То есть на траекторию распространения света не влияет направление, в котором происходит перемещение лучей.


Закон преломления для произвольных сред

24-05-2014, 15:06

Описание

Действие очков на зрение основано на законах распространения света. Наука о законах распространения света и образования изображений с помощью линз называется геометрической, или лучевой, оптикой.

Великий французский математик XVII в. Ферма сформулировал принцип, лежащий в основе геометрической оптики: свет всегда выбирает кратчайший по времени путь между двумя точками. Из этого принципа следует, что в однородной среде свет распространяется прямолинейно: путь луча света из точки 81 в точку 82 представляет собой отрезок прямой. Из этого же принципа выводятся два основных закона геометрической оптики - отражения и преломления света.

ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

Если на пути света встречается другая прозрачная среда, отделенная от первой гладкой поверхностью, то луч света отчасти отражается от этой поверхности, отчасти проходит через нее, меняя свое направление. В первом случае говорят об отражении света, во втором - о его преломлении.

Чтобы объяснить законы отражения и преломления света, нужно ввести понятие нормали - перпендикуляра к отражающей или преломляющей поверхности в точке падения луча. Угол между падающим лучом и нормалью в точке падения называется углом падения, а между нормалью и отраженным лучом - углом отражения.

Закон отражения света гласит: падающий и отраженный лучи лежат в одной плоскости с нормалью в точке падения; угол падения равен углу отражения.

На рис. 1 показан ход луча между точками S 1 и S 2 при его отражении от поверхности А 1 А 2 . Перенесем точку S 2 в S 2 " , находящуюся за отражающей поверхностью. Очевидно, линия S 1 S 2 " будет кратчайшей, если она прямая. Это условие выполняется, когда угол u 1 =u 1 " и, следовательно, u 1 = u 2 , а также когда прямые OS 1 ,ОТ и OS 2 находятся в одной плоскости.

Закон преломления света гласит: падающий и преломленный лучи лежат в одной плоскости с нормалью в точке падения; отношение синуса угла падения к синусу угла преломления для данных двух сред и для лучей данной длины волны есть величина постоянная.

Не приводя расчетов, можно показать, что именно эти условия обеспечивают кратчайшее время прохождения света между двумя точками, находящимися в разных средах (рис. 2).

Закон преломления света выражается следующей формулой:

Величинаn 2,1 называется относительным показателем преломления среды 2 по отношению к среде 1 .

Показатель преломления данной среды относительно пустоты (практически к ней приравнивают воздушную среду) называется абсолютным показателем преломления данной среды n.

Относительный показатель преломления n 2,1 связан с абсолютными показателями первой (n 1 ) и второй (n 2 ) среды отношением:

Абсолютный показатель определяется оптической плотностью среды: чем больше последняя, тем медленнее распространяется свет в данной среде.

Отсюда второе выражение закона преломления света: синус угла падения так относится к синусу угла преломления, как скорость света в первой среде к скорости света во второй среде:

Поскольку свет обладает максимальной скоростью в пустоте (и в воздухе), показатель преломления всех сред больше 1 . Так, для воды он составляет 1,333 , для оптического стекла разных сортов - от 1,487 до 1,806 , для органического стекла (метилметакрилата) -1,490 , для алмаза- 2,417 . В глазу оптические среды имеют следующие показатели преломления: роговица-1,376 , водянистая влага и стекловидное тело -1,336 , хрусталик -1,386 .

ХОД ЛУЧЕЙ ЧЕРЕЗ ПРИЗМУ

Рассмотрим некоторые частные случаи преломления света. Одним из простейших является прохождение света через призму. Она представляет собой узкий клин из стекла или другого прозрачного материала, находящийся в воздухе.

На рис. 3 показан ход лучей через призму. Она отклоняет лучи света по направлению к основанию. Для наглядности профиль призмы выбран в виде прямоугольного треугольника, а падающий луч параллелен его основанию. При этом преломление луча происходит только на задней, косой грани призмы. Угол w, на который отклоняется падающий луч, называется отклоняющим углом призмы. Он практически не зависит от направления падающего луча: если последний не перпендикулярен грани падения, то отклоняющий угол слагается из углов преломления на обеих гранях.

Отклоняющий угол призмы приблизительно равен произведению величины угла при ее вершине на показатель преломления вещества призмы минус 1 :

Вывод этой формулы следует из рис. 3. Проведем перпендикуляр ко второй грани призмы в точке падения на нее луча (штрихпунктирная линия). Он образует с падающим лучом угол ? . Этот угол равен углу ? при вершине призмы, так как их стороны взаимно перпендикулярны. Так как призма тонкая и все рассматриваемые углы малы, можно считать их синусы приблизительно равными самим углам, выраженным в радианах. Тогда из закона преломления света следует:

В этом выражении nстоит в знаменателе, так как свет идет из более плотной среды в менее плотную.

Поменяем местами числитель и знаменатель, а также заменим угол ? на равный ему угол ? :

Поскольку показатель преломления стекла, обычно применяемого для очковых линз, близок к 1,5 , отклоняющий угол призм примерно вдвое меньше угла при их вершине. Поэтому в очках редко применяются призмы с отклоняющим углом более ; они будут слишком толстыми и тяжелыми. В оптометрии отклоняющее действие призм (призматическое действие) чаще измеряют не в градусах, а в призменных диоптриях (? ) или в сантирадианах (срад). Отклонение лучей призмой силой в 1 прдптр (1 срад) на расстоянии 1 м от призмы составляет 1 см. Это соответствует углу, тангенс которого равен 0,01 . Такой угол равен 34" (рис. 4).

Это же относится и к самому дефекту зрения, косоглазию, исправляемому призмами. Угол косоглазия можно измерять в градусах и в призменных диоптриях.

ХОД ЛУЧЕЙ ЧЕРЕЗ ЛИНЗУ

Наибольшее значение для оптометрии имеет прохождение света через линзы. Линзой называют тело из прозрачного материала, ограниченное двумя преломляющими поверхностями, из которых хотя бы одна является поверхностью вращения.

Рассмотрим простейшую линзу-тонкую, ограниченную одной сферической и одной плоской поверхностью. Такую линзу называют сферической. Она представляет собой сегмент, отпиленный от стеклянного шара (рис. 5, а). Линия АО, соединяющая центр шара с центром линзы, называется ее оптической осью. На разрезе такую линзу можно представить как пирамиду, сложенную из маленьких призм с нарастающим углом при вершине (рис. 5, б).

Лучи, входящие в линзу и параллельные ее оси, претерпевают преломление тем большее, чем дальше они отстоят от оси. Можно показать, что все они пересекут оптическую ось в одной точке (F " ). Эта точка называется фокусом линзы (точнее, задним фокусом). Такую же точку имеет и линза с вогнутой преломляющей поверхностью, но ее фокус находится с той же стороны, откуда входят лучи. Расстояние от фокусной точки до центра линзы называется ее фокусным расстоянием (f " ). Величина, обратная фокусному расстоянию, характеризует преломляющую силу, или рефракцию, линзы (D ):

гдеD - преломляющая сила линзы, дптр; f " - фокусное расстояние, м;

Преломляющая сила линзы измеряется в диоптриях. Это основная единица в оптометрии. За 1 диоптрию (D , дптр) принята преломляющая сила линзы с фокусным расстоянием 1 м. Следовательно, линза с фокусным расстоянием 0,5 м обладает преломляющей силой 2,0 дптр, 2 м -0,5 дптр и т. д. Преломляющая сила выпуклых линз имеет положительное значение, вогнутых - отрицательное.

Не только лучи, параллельные оптической оси, проходя через выпуклую сферическую линзу, сходятся в одной точке. Лучи, исходящие из любой точки слева от линзы (не ближе фокусной), сходятся в другую точку справа от нее. Благодаря этому сферическая линза обладает свойством формировать изображения предметов (рис. 6).

Так же как плосковыпуклые и плосковогнутые линзы, действуют линзы, ограниченные двумя сферическими поверхностями,- двояковыпуклые, двояковогнутые и выпукло-вогнутые. В очковой оптике применяются главным образом выпукло-вогнутые линзы, или мениски. От того, какая поверхность имеет большую кривизну, зависит общее действие линзы.

Действие сферических линз называют стигматическим (от греч. - точка), так как они формируют изображение точки в пространстве в виде точки.

Следующие виды линз - цилиндрические и торические. Выпуклая цилиндрическая линза имеет свойство собирать падающий на нее пучок параллельных лучей в линию, параллельную оси цилиндра (рис. 7). Прямую F 1 F 2 аналогии с фокусной точкой сферической линзы называют фокальной линией.

Цилиндрическая поверхность при пересечении ее плоскостями, проходящими через оптическую ось, образует в сечениях окружность, эллипсы и прямую. Два таких сечения называются главными: одно проходит через ось цилиндра, другое - перпендикулярно ему. В первом сечении образуется прямая, во втором - окружность. Соответственно в цилиндрической линзе различают два главных сечения, или меридиана,- ось и деятельное сечение. Нормальные лучи, падающие на ось линзы, не подвергаются преломлению, а падающие на деятельное сечение, собираются на фокальной линии, в точке ее пересечения с оптической осью.

Более сложной является линза с торической поверхностью, которая образуется при вращении окружности или дуги радиусом r вокруг оси. Радиус вращения R не равен радиусу r (рис. 8).

Преломление лучей торической линзой показано на рис. 9.

Торическая линза состоит как бы из двух сферических: радиус одной из них соответствует радиусу вращаемой окружности, радиус второй - радиусу вращения. Соответственно линза имеет два главных сечения (А 1 А 2 и В 1 В 2 ). Падающий на нее параллельный пучок лучей преобразуется в фигуру, называемую коноидом Штурма. Вместо фокусной точки лучи собираются в два отрезка прямых, лежащих в плоскости главных сечений. Они называются фокальными линиями - передней (F 1 F 1 ) и задней (F 2 F 2 ).

Свойство преобразовывать пучок параллельных или идущих от точки лучей в коноид Штурма называют астигматизмом (буквально «бесточие»), а цилиндрические и торические линзы- астигматическими линзами. Мерой астигматизма является разность преломляющей силы в двух главных сечениях (в диоптриях). Чем больше астигматическая разность, тем больше расстояние между фокальными линиями в коноиде Штурма.

Астигматическим действием характеризуется и любая сферическая линза, если лучи падают на нее под большим углом к оптической оси. Это явление называют астигматизмом косого падения (или косых пучков).

В оптометрии приходится иметь дело еще с одним видом линз- с афокальными линзами. Афокальной называется такая линза, обе сферические поверхности которой имеют одинаковый радиус, но одна из них вогнутая, а другая выпуклая (рис. 10, а).

Такая линза не имеет фокуса и, следовательно, не может формировать изображение. Но, находясь на пути светового пучка, несущего изображение, она его увеличивает (если свет идет справа налево) или уменьшает (если свет идет слева направо). Такое действие афокальной линзы называется эйконическим (от греч. - изображение). Чаще для этого применяют не одиночные линзы, а их системы, например телескопы. На рис. 10, б, показана схема простейшего телескопа, состоящего из одной отрицательной и одной положительной линзы (система Галилея).

Эйконическое действие присуще и обычным сферическим линзам: положительные линзы увеличивают, а отрицательные - уменьшают изображение. Измеряют это действие в процентах, а при больших увеличениях - в «крагах» (х ). Так, лупа, увеличивающая изображение в 2 раза, называется двукратной ().

Таким образом, линзы осуществляют четыре вида оптического действия: призматическое, стигматическое, астигматическое и эйконическое. Далее будет показано, как все они используются для коррекции дефектов зрения.

Отметим, что в большинстве случаев для линз характерно не только, то действие, для которого они предназначены: сферическим (стигматическим) линзам присуще также и эйконическое действие, а на периферии стекла, кроме того, призматическое и астигматическое. Астигматические линзы характеризуются также стигматическим, призматическим и эйконическим действием.

СЛОЖНЫЕ ОПТИЧЕСКИЕ СИСТЕМЫ

До сих пор речь шла об идеальных линзах, как бы не имеющих толщины (за исключением афокальных). В оптометрии приходится иметь дело с линзами, имеющими реальную толщину, а еще чаще с системами линз.

Особый интерес представляют центрированные системы, т. е. такие, которые состоят из сферических линз, имеющих общую оптическую ось. Для описания таких систем и расчета их действия применяют два способа: с введением так называемых кардинальных точек и плоскостей; с использованием понятия сходимости лучей и вершинной рефракции.

Первый способ, разработанный немецким математиком Гауссом, заключается в следующем. На оптической оси системы выделяют четыре Кардинальные точки: две узловые и две главные (рис. 11).

Узловые точки - передняя и задняя (N и N " ) - обладают следующим свойством: луч, входящий в переднюю точку (S 1 N ), выходит параллельно самому себе из задней (N ’S 2 ). Их применяют при построении изображений, формируемых оптической системой.

Гораздо большее значение имеют главные точки (Н и Н" ). Перпендикулярные к оптической оси плоскости, проведенные через них, называются главными плоскостями - передней и задней. Луч света, входящий в одну из них, проходит до другой параллельно оптической оси. Иначе говоря, изображение на задней главной плоскости повторяет изображение на передней. Все расстояния на оптической оси отсчитывают от главных плоскостей: до объекта-от передней, до изображения - от задней. Часто эти плоскости лежат так близко друг к другу, что приближенно могут быть заменены одной главной плоскостью.

Так, например, в оптической системе человеческого глаза передняя главная плоскость лежит в 1,47 мм, а задняя - в 1,75 мм от вершины роговицы. При расчетах принимают, что обе они расположены приблизительно в 1,6 мм от этой точки.

Второй способ описания центрированных оптических систем предполагает, что пучку лучей в каждой точке на оптической оси присуще особое свойство - сходимость. Она определяется величиной, обратной расстоянию до точки схождения этого пучка, и измеряется, так же как и рефракция, в диоптриях. Действие каждой преломляющей поверхности на пути пучка- это изменение сходимости. Выпуклые поверхности увеличивают сходимость, вогнутые - уменьшают. Сходимость параллельного пучка лучей равна нулю.

Этот способ особенно удобен для расчета суммарной преломляющей силы системы. Типичной сложной оптической системой является толстая линза (рис. 12), имеющая две преломляющие поверхности и однородную среду между ними.

Изменения сходимости падающего на линзу параллельного пучка лучей определяются преломляющей силой этих поверхностей, расстоянием между ними и показателем преломления материала линзы.

Примем следующие обозначения:
  • L 0 - сходимость параллельного пучка, падающего на линзу;
  • L 1 - сходимость пучка после преломления на первой поверхности линзы;
  • L 2 - сходимость пучка при достижении второй поверхности линзы;
  • L 3 - сходимость пучка после преломления на второй поверхности, т. е. при выходе из линзы;
  • D 1 - преломляющая сила первой поверхности;
  • D 2 - преломляющая сила второй поверхности;
  • d - расстояние между поверхностями линзы;
  • n - показатель преломления материала линзы.

При этом величины L иD измеряются в диоптриях, а d - b - в метрах.

Сходимость пучка на входе в линзу L 0 = 0 .

После преломления на передней поверхности ЛИНЗЫ она становится равной L 1 = D 1 . При достижении задней поверхности она приобретает значение:

и, наконец, при выходе из линзы

Это выражение показывает изменение сходимости пучка при прохождении через линзу при отсчете расстояний от ее передней поверхности. Оно называется передней вершинной рефракцией линзы. Если рассматривать ход лучей от задней поверхности к передней, то в знаменателе D 1 заменится на D 2 . Выражение

представляет собой величину задней вершинной рефракции толстой линзы. Значения силы линз в пробных наборах очковых стекол и представляют собой их задние вершинные рефракции.

Числитель этого выражения является формулой для определения суммарной преломляющей силы системы, состоящей из двух элементов (поверхностей или тонких линз):

гдеD - суммарная преломляющая сила системы;

D 1 и D 2 - преломляющая сила элементов системы;

n - показатель преломления среды между элементами;

d - расстояние между элементами системы.

Закон преломления света

Явление преломления света, наверное, каждый не раз встречал в повседневной жизни. Например, если опустить в прозрачный стакан с водой трубочку, то можно заметить, что та часть трубочки, которая находится в воде, кажется сдвинутой в сторону. Это объясняется тем, что на границе двух сред происходит изменение направления лучей, иными словами преломления света.

Точно так же, если опустить в воду под наклоном линейку, будет казаться, что она преломилась и ее подводная часть поднялась выше.

Ведь оказывается, что лучи света, оказавшись на границе воздуха и воды, испытывают преломление. Луч света попадает на поверхность воды под одним углом, а дальше он уходит вглубь воды под другим углом, под меньшим наклоном к вертикали.



Если пустить из воды в воздух обратный луч, он пройдет по тому же самому пути. Угол между перпендикуляром к поверхности раздела сред в точке падения и падающим лучом называется углом падения.

Угол преломления – это угол между тем же самым перпендикуляром и преломленным лучом. Преломления света на границе двух сред объясняется различной скоростью распространения света в этих средах. При преломлении света всегда выполнятся две закономерности:

Во-первых, лучи, независимо от того он падающий или преломленный, а также и перпендикуляр, который является границей раздела двух сред в точке излома луча - всегда лежат в одной плоскости;

Во-вторых, отношение sіnus угла падения к sіnus угла преломления, являются постоянной величиной для двух этих сред.

Эти два утверждения выражают закон преломления света.



Sіnus угла падения α относится к sіnus угла преломления β, так же как скорость волны в первой среде - v1 к скорости волны во второй среде - v2, и равен величине n. N – это постоянная величина, которая не зависит от угла падения. Величина n называется показателем преломления второй среды относительно первой среды. И если в качестве первой среды был вакуум, то показатель преломления второй среды называют абсолютным показателем преломления. Соответственно он равен отношению sіnus угла падения к sіnus угла преломления при переходе светового луча из вакуума в данную среду.

Показатель преломления зависит от характеристик света, от температуры вещества и от его плотности, то есть от физических характеристик среды.

Чаще приходится рассматривать переход света через границу воздух-твердое тело или воздух-жидкость, чем через границу вакуум-определенная среда.

Следует отметить так же, что относительные показатель преломления двух веществ равен отношению из абсолютных показателей преломления.

Давайте познакомится с этим законом с помощью простых физических опытов, которые доступы вам всем в бытовых условиях.

Опыт 1.

Положим монету в чашку так, чтобы она скрылась за краем чашки, а теперь будем наливать в чашку воду. И вот что удивительно: монета показалась из-за края чашки, будто бы она всплыла, или дно чашки поднялось вверх.



Нарисуем монету в чашке с водой, и идущие от нее лучи солнца. На границе раздела воздуха и воды эти лучи преломляются и выходят из воды под большим углом. А мы видим монету в том месте, где сходятся линии преломленных лучей. Поэтому видимое изображение монеты находится выше, чем сама монета.



Опыт 2.

Поставим на пути параллельных лучей света наполненную водой емкость с параллельными стенками. На входе из воздуха в воду все четыре луча повернулись на некоторый угол, а на выходе из воды в воздух они повернулись на тот же самый угол, но в обратную сторону.



Увеличим наклон лучей, и на выходе они все равно останутся параллельными, но сильнее сдвинутся в сторону. Из-за этого сдвига книжные строчки, если посмотреть на них сквозь прозрачную пластину, кажутся перерезанными. Они сместись вверх, как поднималась вверх монета в первом опыте.



Все прозрачные предметы мы, как правило, видим исключительно благодаря тому, что свет преломляется и отражается на их поверхности. Если бы такого эффекта не существовало, то все эти предметы были бы полностью невидимыми.

Опыт 3.

Опустим пластину из оргстекла в сосуд с прозрачными стенками. Ее прекрасно видно. А теперь зальем в сосуд подсолнечное масло, и пластина стала почти невидимой. Дело в том, что световые лучи на границе масла и оргстекла почти не преломляются, вот пластина и становится пластиной невидимой.



Ход лучей в треугольной призме

В различных оптических приборах довольно часто используют треугольную призму, которая может быть изготовлена из такого материала, как стекло, или же из других прозрачных материалов.

При прохождении через треугольную призму лучи преломляются на обеих поверхностях. Угол φ между преломляющими поверхностями призмы называется преломляющим углом призмы. Угол отклонения Θ зависит от показателя преломления n призмы и угла падения α.

Θ = α + β1 - φ, f= φ + α1


Все вы знаете известную считалочку для запоминания цветов радуги. Но почему эти цвета всегда располагаются в таком порядке, как они получаются из белого солнечного света, и почему в радуге нет никаких других цветов кроме этих семи известно не каждому. Объяснить это легче на опытах и наблюдениях.

Красивые радужные цвета мы можем видеть на мыльных пленках, особенно если эти пленки совсем тонкие. Мыльная жидкость стекает вниз и в этом же направлении движутся цветные полосы.



Возьмем прозрачную крышку от пластиковой коробки, а теперь наклоним ее так, чтобы от крышки отразился белый экран компьютера. На крышке появятся неожиданно яркие радужные разводы. А какие прекрасные радужные цвета видны при отражении света от компакт-диска, особенно если посветить на диск фонариком и отбросить эту радужную картину на стену.



Первым появление радужных цветов попробовал объяснить великий английский физик Исаак Ньютон. Он пропустил в темную комнату узкий пучок солнечного света, а на его пути поставил треугольную призму. Выходящий из призмы свет образует цветную полосу, которая называется спектром. Меньше всего в спектре отклоняется красный цвет, а сильнее всего - фиолетовый. Все остальные цвета радуги располагаются между этими двумя без особо резких границ.



Лабораторный опыт

В качестве источник белого света выберем яркий светодиодный фонарик. Чтобы сформировать узкий световой пучок поставим одну щель сразу за фонариком, а вторую непосредственно перед призмой. На экране видна яркая радужная полоса, где хорошо различимы красный цвет, зеленый и синий. Они и составляют основу видимого спектра.



Поставим на пути цветного пучка цилиндрическую линзу и настроим ее на резкость – пучок на экране собрался в узкую полоску, все цвета спектра смешались, и полоска снова стала белой.

Почему же призма превращает белый свет в радугу? Оказывается, дело в том, что все цвета радуги уже содержатся в белом свете. Показатель преломления стекла различается для лучей разного цвета. Поэтому призма отклоняет эти лучи по-разному.



Каждый отдельный цвет радуги является чистым и его уже нельзя расщепить на другие цвета. Ньютон доказал это на опыте, выделив из всего спектра узкий пучок и поставив на его пути вторую призму, в которой никакого расщепления уже не произошло.

Теперь мы знаете, как призма разлагает белый свет на отдельные цвета. А в радуге капельки воды работают как маленькие призмы.

Но если посветить фонариком на компакт-диск работает немного другой принцип, несвязанный с преломление света через призму. Эти принципы будут изучаться в дальнейшем, на уроках физики, посвященным свету и волновой природе света.