Понятие о волновой функции. Физический смысл волновой функции

Волновая функция и ее физический смысл.

Какой физический смысл следует придать введенной нами волновой функции?

Мы уже обсуждали это вопрос и пришли к выводу, что это поле определяет вероятность обнаружить частицу в различных точках пространства в заданный момент времени. Точнее, квадрат модуля волновой функции есть плотность вероятности обнаружить частицу в точке с координатой в момент времени t :

(17.15)

Естественно полагать, что где-то в пространстве частица достоверно существует. По-

этому волновая функция должна удовлетворять следующему условию нормировки

(17.16)

Здесь интеграл берется по области определения волновой функции, как правило, это все бесконечное пространство. Таким образом, состояния частицы должны описываться функциями с интегрируемым квадратом модуля.

Здесь нас ожидает «неприятность». Единственная волновая функция, которую мы уже знаем, это волна де Бройля, соответствующая частице с заданным значением импульса. Поскольку для этой волны

ng w:val="EN-US"/>1"> (17.17)

то нормировочный интеграл, очевидно, расходится. С другой стороны, такая ситуация

понятна. Если импульс известен точно (а для волны де Бройля это именно так), то из соотношения неопределенностей для неопределенности координаты получаем

(17.18)

т.е. частица делокализована по всему бесконечному пространству. Именно такое абсолютно делокализованное состояние и задает плоская волна. Конечно, к реальному состоянию частицы плоская волна прямого отношения не имеет. Это математическая абстракция. Любой физический процесс происходит, может быть и в макроскопически большой, но ограниченной области пространства. Поэтому мы можем утверждать, что состояние частицы с точно определенным значением импульса принципиально невозможно, а волновая функция вида (17.1) или (17.7) не описывает никакого состояния реаль ного физического объекта. С другой стороны, если волновой пакет достаточно широкий, т.е. его пространственной размер много больше длин волн де Бройля его образующих, приближение плоской волны часто оказывается очень удобным с математической точки зрения.

Таким образом, помимо функций с интегрируемым квадратом модуля в квантовой механике бывает удобно работать и с функциями, которые условию нормировки

(6.16) не удовлетворяют. Рассмотрим вопрос о нормировке таких функций на примере состояния (6.1). Мы опять для простоты ограничимся одномерным случаем. Будем считать, что состояние в виде плоской волны

(17.19)

(A = - нормировочная константа, индекс « p » указывает, что это состояние с импульсом p ) задано на отрезке x ∈(− L/ 2, L/ 2). Мы полагаем, что L велико и в дальнейшем перейдем к пределу L →∞.

Рассмотрим значение следующего интеграла

(17.20)

Вычисление интеграла (17.20) дает

Здесь Δk = (p p ") h . При Δk ≠ 0 в пределе L →∞ получаем, что I →0 , т.е. волновые функции состояний с различными значениями импульса становятся ортогональны друг другу. В случае Δk ≡ 0 получаем, что I = 1 для любого конечного сколь угодно большого значения L , т.е. условие нормировки (17.16) оказывается выполненным. Указанная процедура может быть использована при решении конкретных задач, однако не совсем удобна, так как в исходной функции (17.19) появился нормировочный размер L . Поэтому обычно поступают немного иначе. Пусть нормировочная константа A = 1. Тогда вычисление интеграла (17.21) в пределе L →∞ дает

Мы здесь использовали известные соотношения

Отсюда возникает условие нормировки на δ - функцию:

где (17.23)

В трехмерном случае аналогично получаем (17.24)

причем (17.25)

Условие нормировки на δ - функцию используется в квантовой теории всякий раз, когда

волновая функция не может быть нормирована согласно условию (17.16).

Опыт Франка-Герца

Опыт Франка - Герца - опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.

На рисунке приведена схема опыта. К катоду К и сетке C 1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V , ускоряющая электроны, и снимается вольт-амперная характеристика. К сетке C 2 и аноду А прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост тока I при увеличении ускоряющего напряжения вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg, и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эВ значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка - Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электромагнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

Принцип Паули.

На первый взгляд представляется, что в атоме все электроны должны заполнить уровень с наименьшей возможной энергией. Опыт же показывает, что это не так.

Действительно, в соответствии с принципом Паули, в атоме не может быть электронов с одинаковыми значениями всех четырёх квантовых чисел.
Каждому значению главного квантового числа п соответствует 2п 2 состояний, отличающихся друг от друга значениями квантовых чисел l, m и m S .

Совокупность электронов атома с одинаковыми значения квантового числа п образует так называемую оболочку. В соответствии с номером п

Таблица 18. 1

Оболочки подразделяются на подоболочки , отличающиеся квантовым числом l . Число состояний в подоболочке равно 2(2l + 1).
Различные состояния в подоболочке отличаются значениями квантовых чисел т и m S .

Таблица 18. 2

Понимание периодической системы элементов основано на идее об оболочечной структуре электронного облака атома.

Каждый следующий атом получается из предыдущего добавлением заряда ядра на единицу (е ) и добавлением одного электрона, который помещают в разрешённое принципом Паули состояние с наименьшей энергией.

> Волновая функция

Читайте о волновой функции и теории вероятностей квантовой механики: суть уравнения Шредингера, состояние квантовой частицы, гармонический осциллятор, схема.

Речь идет об амплитуде вероятности в квантовой механике, описывающей квантовое состояние частицы и ее поведение.

Задача обучения

  • Объединить волновую функцию и плотность вероятности определения частички.

Основные пункты

  • |ψ| 2 (x) соответствует плотности вероятности определения частички в конкретном месте и моменте.
  • Законы квантовой механики характеризуют эволюцию волновой функции. Уравнение Шредингера объясняет ее наименование.
  • Волновая функция должна удовлетворять множество математических ограничений для вычислений и физической интерпретации.

Термины

  • Уравнение Шредингера – частичный дифференциал, характеризующий изменение состояния физической системы. Его сформулировал в 1925 году Эрвин Шредингер.
  • Гармонический осциллятор – система, которая при смещении от изначальной позиции, испытывает влияние силы F, пропорциональной смещению х.

В пределах квантовой механики волновая функция отображает амплитуду вероятности, характеризующую квантовое состояние частички и ее поведение. Обычно значение – комплексное число. Наиболее распространенными символами волновой функции выступают ψ (x) или Ψ(x). Хотя ψ – комплексное число, |ψ| 2 – вещественное и соответствует плотности вероятности нахождения частицы в конкретном месте и времени.

Здесь отображены траектории гармонического осциллятора в классической (А-В) и квантовой (C- H) механиках. В квантовой шар обладает волновой функцией, отображенной с реальной частью в синем и мнимой в красном. Траектории C- F – примеры стоячих волн. Каждая такая частота будет пропорциональной возможному уровню энергии осциллятора

Законы квантовой механики эволюционируют со временем. Волновая функция напоминает другие, вроде волн в воде или струне. Дело в том, что формула Шредингера выступает типом волнового уравнения в математике. Это приводит к двойственности волновых частиц.

Волновая функция обязана соответствовать ограничениям:

  • всегда конечная.
  • всегда непрерывная и непрерывно дифференцируемая.
  • удовлетворяет соответствующее условие нормировки, чтобы частичка существовала со 100% определенностью.

Если требования не удовлетворены, то волновую функцию нельзя интерпретировать в качестве амплитуды вероятности. Если мы проигнорируем эти позиции и воспользуемся волновой функцией, чтобы определить наблюдения квантовой системы, то не получим конечных и определенных значений.

Исходя из представления о наличии у электрона волновых свойств. Шредингер в 1925 г. предположил, что состояние движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в это уравнение вместо длины волны ее значение из уравнения де Бройля , он получил новое уравнение, связывающее энергию электрона с пространственными координатами и так называемой волновой функцией , соответствующей в этом уравнении амплитуде трехмерного волнового процесса.

Особенно важное значение для характеристики состояния электрона имеет волновая функция . Подобно амплитуде любого волнового процесса, она может принимать как положительные, так и отрицательные значения. Однако величина всегда положительна. При этом она обладает замечательным свойством: чем больше значение в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т. е. что его существование будет обнаружено в каком-либо физическом процессе.

Более точным будет следующее утверждение: вероятность обнаружения электрона в некотором малом объеме выражается произведением . Таким образом, сама величина выражает плотность вероятности нахождения электрона в соответствующей области пространства.

Рис. 5. Электронное облако атома водорода.

Для уяснения физического смысла квадрата волновой функции рассмотрим рис. 5, на котором изображен некоторый объем вблизи ядра атома водорода. Плотность размещения точек на рис. 5 пропорциональна значению в соответствующем месте: чем больше величина , тем гуще расположены точки. Если бы электрон обладал свойствами материальной точки, то рис. 5 можно было бы получить, многократно наблюдая атом водорода и каждый раз отмечая местонахождение электрона: плотность размещения точек на рисунке была бы тем больше, чем чаще обнаруживается электрон в соответствующей области пространства или, иначе говоря, чем больше вероятность обнаружения его в этой области.

Мы знаем, однако, что представление об электроне как о материальной точке не соответствует его истинной физической природе. Поэтому рис. 5 правильнее рассматривать как схематическое изображение электрона, «размазанного» по всему объему атома в виде так называемого электронного облака: чем плотнее расположены точки в том или ином месте, тем больше здесь плотность электронного облака. Иначе говоря, плотность электронного облака пропорциональна квадрату волновой функции.

Представление о состоянии электрона как о некотором облаке электрического заряда оказывается очень удобным, хорошо передает основные особенности поведения электрона в атомах и молекулах и будет часто использоваться в последующем изложении. При этом, однако, следует иметь в виду, что электронное облако не имеет определенных, резко очерченных границ: даже на большом расстоянии от ядра существует некоторая, хотя и очень малая, вероятность обнаружения электрона. Поэтому под электронным облаком условно будем понимать область пространства вблизи ядра атома, в которой сосредоточена преобладающая часть (например, ) заряда и массы электрона. Более точное определение этой области пространства дано на стр. 75.

Волнова́я фу́нкция , или пси-фу́нкция ψ {\displaystyle \psi } - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

| ψ (t) ⟩ = ∫ Ψ (x , t) | x ⟩ d x {\displaystyle \left|\psi (t)\right\rangle =\int \Psi (x,t)\left|x\right\rangle dx}

где | x ⟩ = | x 1 , x 2 , … , x n ⟩ {\displaystyle \left|x\right\rangle =\left|x_{1},x_{2},\ldots ,x_{n}\right\rangle } - координатный базисный вектор, а Ψ (x , t) = ⟨ x | ψ (t) ⟩ {\displaystyle \Psi (x,t)=\langle x\left|\psi (t)\right\rangle } - волновая функция в координатном представлении.

Нормированность волновой функции

Волновая функция Ψ {\displaystyle \Psi } по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

∫ V Ψ ∗ Ψ d V = 1 {\displaystyle {\int \limits _{V}{\Psi ^{\ast }\Psi }dV}=1}

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями Ψ 1 {\displaystyle \Psi _{1}} и Ψ 2 {\displaystyle \Psi _{2}} , то она может пребывать и в состоянии, описываемом волновой функцией

Ψ Σ = c 1 Ψ 1 + c 2 Ψ 2 {\displaystyle \Psi _{\Sigma }=c_{1}\Psi _{1}+c_{2}\Psi _{2}} при любых комплексных c 1 {\displaystyle c_{1}} и c 2 {\displaystyle c_{2}} .

Очевидно, что можно говорить и о суперпозиции (сложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией Ψ Σ = c 1 Ψ 1 + c 2 Ψ 2 + … + c N Ψ N = ∑ n = 1 N c n Ψ n {\displaystyle \Psi _{\Sigma }=c_{1}\Psi _{1}+c_{2}\Psi _{2}+\ldots +{c}_{N}{\Psi }_{N}=\sum _{n=1}^{N}{c}_{n}{\Psi }_{n}} .

В таком состоянии квадрат модуля коэффициента c n {\displaystyle {c}_{n}} определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией Ψ n {\displaystyle {\Psi }_{n}} .

Поэтому для нормированных волновых функций ∑ n = 1 N | c n | 2 = 1 {\displaystyle \sum _{n=1}^{N}\left|c_{n}\right|^{2}=1} .

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

Волновая функция в различных представлениях используется состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия

Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин. Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия

волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave function … Справочник технического переводчика

волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь

волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas

волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas

ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция, описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь

Книги

  • , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 882 грн (только Украина)
  • Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…