Квадратная матрица. Понятие матрицы. Виды матриц

Опр . Прямоугольная таблица, состоящая из т строк и п столбцов действительных чисел называется матрицей размера т×п . Матрицы обозначают заглавными латинскими буквами: А, В,…, а массив чисел выделяют круглыми или квадратными скобками.

Числа, входящие в таблицу, называются элементами матрицы и обозначаются малыми латинскими буквами с двойным индексом , гдеi – номер строки, j – номер столбца, на пресечении которых расположен элемент. В общем виде матрица записывается так:

Две матрицы считаются равными , если равны их соответствующие элементы.

Если число строк матрицы т равно числу ее столбцов п , то матрица называется квадратной (в противном случае – прямоугольной).


Матрица размера
называется матрицей-строкой. Матрица размера

называется матрицей-столбцом.

Элементы матрицы, имеющие равные индексы (
и т.д.), образуютглавную диагональ матрицы. Другая диагональ называется побочной.



Квадратная матрица называется диагональной , если все ее элементы, расположенные вне главной диагонали, равны нулю.

Диагональная матрица, у которой диагональные элементы равны единице, называется единичной матрицей и имеет стандартное обозначение Е:


Если все элементы матрицы, расположенные выше (или ниже) главной диагонали равны нулю, говорят, что матрица имеет треугольный вид:


§2. Операции над матрицами

1. Транспонирование матрицы – преобразование, при котором строки матрицы записывают в виде столбцов при сохранении их порядка. Для квадратной матрицы это преобразование эквивалентно симметричному отображению относительно главной диагонали:

.


2. Матрицы одинаковой размерности можно суммировать (вычитать). Суммой (разностью) матриц называется матрица той же размерности, каждый элемент которой равен сумме (разности) соответствующих элементов исходных матриц:



3. Любую матрицу можно умножать на число. Произведением матрицы на число называется матрица того же порядка, каждый элемент которой равен произведению соответствующего элемента исходной матрицы на это число:

.

4. Если число столбцов одной матрицы равно числу строк другой, то можно выполнить умножение первой матрицы на вторую. Произведением таких матриц называется матрица, каждый элемент которой равен сумме попарных произведений элементов соответствующей строки первой матрицы и элементов соответствующего столбца второй матрицы.

Следствие . Возведение матрицы в степень к >1 есть произведение матрицы А к раз. Определено только для квадратных матриц.

Пример .

Свойства операций над матрицами.

  1. (А+В)+С=А+(В+С);

    к(А+В)=кА+кВ;

    А(В+С)=АВ+АС;

    (А+В)С=АС+ВС;

    к(АВ)=(кА)В=А(кВ);

    А(ВС)=(АВ)С;

  2. (кА) Т =кА Т;

    (А+В) Т =А Т +В Т;

    (АВ) Т =В Т А Т;

Перечисленные выше свойства аналогичны свойствам операций над числами. Есть и специфические свойства матриц. К ним относится, например, отличительное свойство умножения матриц. Если произведение АВ существует, то произведение ВА

Может не существовать

Может отличаться от АВ.

Пример . Предприятие выпускает продукцию двух видов А и В и использует при этом сырье трех типов S 1 , S 2 , и S 3 . Нормы расхода сырья заданы матрицей N=
, гдеn ij – количество сырья j , расходуемого на производство единицы продукции i . План выпуска продукции задан матрицей С=(100 200), а стоимость единицы каждого вида сырья – матрицей . Определить затраты сырья, необходимые для планового выпуска продукции и общую стоимость сырья.

Решение. Затраты сырья определим как произведение матриц С и N:

Общую стоимость сырья вычислим как произведение S и Р.

Операции над матрицами и их свойства.

Понятие определителя второго и третьего порядков. Свойства определителей и их вычисление.

3. Общее описание задания.

4. Выполнение заданий.

5. Оформление отчета о лабораторной работе.

Глоссарий

Выучите определения следующих терминов :

Размерностью матрицы называется совокупность двух чисел, состоящая из числа её строк m и числа столбцов n.

Если m=n, то матрицу называют квадратной матрицей порядка n.

Операции над матрицами : транспонирование матрицы, умножение (деление) матрицы на число, сложение и вычитание, умножение матрицы на матрицу.

Переход от матрицы А к матрице А т, строками которой являются столбцы, а столбцами —строки матрицы А, называется транспонированием матрицы А.

Пример: А= , А т = .

Чтобы умножить матрицу на число , нужно каждый элемент матрицы умножить на это число.

Пример: 2А= 2· = .

Суммой (разностью) матриц А и В одинаковой размерности называется матрица С=А В, элементы которой равны с ij = a ij b ij для всех i и j .

Пример: А = ; В = . А+В= = .

Произведением матрицы А m n на матрицу В n k называется матрица С m k , каждый элемент которой c ij равен сумме произведений элементов i-ой строки матрицы А на соответствующий элемент j-го столбца матрицы В:

c ij = a i1 · b 1j + a i2 ·b 2j +…+ a in ·b nj .

Чтобы можно было умножить матрицу на матрицу, они должны быть согласованными для умножения, а именно число столбцов в первой матрице должно быть равно числу строк во второй матрице.

Пример: А= и В = .

А·В—невозможно, т.к. они не согласованы.

В·А= . = = .

Свойства операции умножения матриц .

1. Если матрица А имеет размерность m n, а матрица В—размерность n k , то произведение А·В существует.

Произведение В·А может существовать, только когда m=k.

2.Умножение матриц не коммутативно, т.е. А·В не всегда равно В·А даже если определены оба произведения. Однако если соотношение А·В= В·А выполняется, то матрицы А и В называются перестановочными .

Пример . Вычислить .

Минором элемента называется определитель матрицы порядка, полученный вычёркиванием -ой строки -го столбца.

Алгебраическим дополнением элемента называется .

Теорема разложения Лапласа :

Детерминант квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример . Вычислить .

Решение. .

Свойства определителей n-го порядка :

1) Величина определителя не изменится, если строки и столбца поменять местами.

2) Если определитель содержит строку (столбец) из одних нулей, то он равен нулю.

3) При перестановке двух строк (столбцов) определитель меняет знак.

4) Определитель, имеющий две одинаковые строки (столбца), равен нулю.

5) Общий множитель элементов любой строки (столбца) можно вынести за знак определителя.

6) Если каждый элемент некоторой строки (столбца) представляет собой сумму двух слагаемых, то определитель равен сумме двух определителей, в каждом из которых все строки (столбцы), кроме упомянутой, такие же, как и в данном определителе, а в упомянутой строке (столбце) первого определителя стоят первые слагаемые, второго - вторые.

7) Если в определителе две строки (столбца) пропорциональны, то он равен нулю.

8) Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

9) Определители треугольных и диагональных матриц равны произведению элементов главной диагонали.

Метод накопления нулей вычисления определителей основан на свойствах определителей.

Пример . Вычислить .

Решение. Вычтем из первой строки удвоенную третью, далее используем теорему разложения по первому столбцу.

~ .

Контрольные вопросы (ОК-1, ОК-2, ОК-11,ПК-1):

1. Что называется определителем второго порядка?

2. Какие основные свойства определителей?

3. Что называется минором элемента?

4. Что называется алгебраическим дополнением элемента определителя?

5. Как разложить определитель третьего порядка по элементам какой-либо строки (столбца)?

6. Чему равна сумма произведений элементов какой-либо строки (или столбца), определителя по алгебраическим дополнениям соответствующих элементов другой строки (или столбца)?

7. В чём заключается правило треугольников?

8. Как вычисляются определители высших порядков способом понижения порядка

10. Какая матрица называется квадратной? Нулевой? Что такое матрица-строка, матрица-столбец?

11. Какие матрицы называются равными?

12. Дать определения операций сложения, умножения матриц, умно-жения матрицы на число

13. Каким условиям должны удовлетворять размеры матриц при сло-жении, умножении?

14. В чём заключаются свойства алгебраических операций: коммута-тивность, ассоциативность, дистрибутивность ? Какие из них выпол-няются для матриц при сложении, умножении, а какие нет?

15. Что такое обратная матрица? Для каких матриц она определена?

16. Сформулировать теорему о существовании и единственности обратной матрицы.

17. Сформулировать лемму о транспонировании произведения мат-риц.

Практические задания общие (ОК-1, ОК-2, ОК-11,ПК-1):

№1. Найти сумму и разность матриц А и В:

а)

б)

в)

№2. Выполните указанные действия:

в) Z= -11А+7В-4С+D

если

№3. Выполните указанные действия:

в)

№4. При помощи применения четырех способов вычисления определителя квадратной матрица, найти определители следующих матриц:

№5. Найти определителей n-ого порядка, по элементам столбца (строки):

а) б)

№6. Найти определитель матрицы, используя свойства определителей:

а) б)

Матрицы в математике - один из важнейших объектов, имеющих прикладное значение. Часто экскурс в теорию матриц начинают со слов: "Матрица - это прямоугольная таблица...". Мы начнём этот экскурс несколько с другой стороны.

Телефонные книги любого размера и с любым числом данных об абоненте - ни что иное, как матрицы. Такие матрицы имеют примерно следующий вид:

Ясно, что такими матрицами мы все пользуемся почти каждый день. Эти матрицы бывают с различным числом строк (различаются как выпущенный телефонной компанией справочник, в котором могут быть тысячи, сотни тысяч и даже миллионы строк и только что начатая Вами новая записная книжка, в которой меньше десяти строк) и столбцов (справочник должностных лиц какой-нибудь организации, в котором могут быть такие столбцы, как должность и номер кабинета и та же Ваша записная книжка, где может не быть никаких данных, кроме имени, и, таким образом, в ней только два столбца - имя и телефон).

Всякие матрицы можно складывать и умножать, а также проводить над ними другие операции, однако нет необходимости складывать и умножать телефонные справочники, от этого нет никакой пользы, к тому же можно и подвинуться рассудком.

Но очень многие матрицы можно и нужно складывать и перемножать и решать таким образом различные насущные задачи. Ниже примеры таких матриц.

Матрицы, в которых столбцы - выпуск единиц продукции того или иного вида, а строки - годы, в которых ведётся учёт выпуска этой продукции:

Можно складывать матрицы такого вида, в которых учтён выпуск аналогичной продукции различными предприятиями, чтобы получить суммарные данные по отрасли.

Или матрицы, состоящие, к примеру, из одного столбца, в которых строки - средняя себестоимость того или иного вида продукции:

Матрицы двух последних видов можно умножать, а в результате получится матрица-строка, содержащая себестоимость всех видов продукции по годам.

Матрицы, основные определения

Прямоугольная таблица, состоящая из чисел, расположенных в m строках и n столбцах, называется mn-матрицей (или просто матрицей ) и записывается так:

(1)

В матрице (1) числа называются её элементами (как и в определителе, первый индекс означает номер строки, второй – столбца, на пересечении которых стоит элемент; i = 1, 2, ..., m ; j = 1, 2, n ).

Матрица называется прямоугольной , если .

Если же m = n , то матрица называется квадратной , а число n – её порядком .

Определителем квадратной матрицы A называется определитель, элементами которого являются элементы матрицы A . Он обозначается символом |A |.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Матрицы называются равными , если у них одинаковое число строк и столбцов и все соответствующие элементы совпадают.

Матрица называется нулевой , если всё её элементы равны нулю. Нулевую матрицу будем обозначать символом 0 или .

Например,

Матрицей-строкой (или строчной ) называется 1n -матрица, а матрицей-столбцом (или столбцовой ) – m 1-матрица.

Матрица A " , которая получается из матрицы A заменой в ней местами строк и столбцов, называется транспонированной относительно матрицы A . Таким образом, для матрицы (1) транспонированной является матрица

Операция перехода к матрице A " , транспонированной относительно матрицы A , называется транспонированием матрицы A . Для mn -матрицы транспонированной является nm -матрица.

Транспонированной относительно матрицы является матрица A , то есть

(A ")" = A .

Пример 1. Найти матрицу A " , транспонированную относительно матрицы

и выяснить, равны ли определители исходной и транспонированной матриц.

Главной диагональю квадратной матрицы называется воображаемая линия, соединяющая её элементы, у которых оба индекса одинаковые. Эти элементы называются диагональными .

Квадратная матрица, у которой все элементы вне главной диагонали равны нулю, называется диагональной . Не обязательно все диагональные элементы диагональной матрицы отличны от нуля. Среди них могут быть и равные нулю.

Квадратная матрица, у которой элементы, стоящие на главной диагонали равны одному и тому же числу, отличному от нуля, а все прочие равны нулю, называется скалярной матрицей .

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице. Например, единичной матрицей третьего порядка является матрица

Пример 2. Даны матрицы:

Решение. Вычислим определители данных матриц. Пользуясь правилом треугольников, найдём

Определитель матрицы B вычислим по формуле

Легко получаем, что

Следовательно, матрицы A и – неособенные (невырожденные, несингулярные), а матрица B – особенная (вырожденная, сингулярная).

Определитель единичной матрицы любого порядка, очевидно, равен единице.

Решить задачу на матрицы самостоятельно, а затем посмотреть решение

Пример 3. Даны матрицы

,

,

Установить, какие из них являются неособенными (невырожденными, несингулярными).

Применение матриц в математико-экономическом моделировании

В виде матриц просто и удобно записываются структурированные данные о том или ином объекте. Матричные модели создаются не только для хранения этих структурированных данных, но и для решения различных задач с этими данными средствами линейной алгебры.

Так, известной матричной моделью экономики является модель "затраты-выпуск", внедрённая американским экономистом русского происхождения Василием Леонтьевым. Эта модель исходит из предположения, что весь производственный сектор экономики разбит на n чистых отраслей. Каждая из отраслей выпускает продукцию только одного вида и разные отрасли выпускают разную продукцию. Из-за такого разделения труда между отраслями существуют межотраслевые связи, смысл которых состоит в том, что часть продукции каждой отрасли передаётся другим отраслям в качестве ресурса производства.

Объём продукции i -й отрасли (измеряемый определённой единицей измерения), которая была произведена за отчётный период, обозначается через и называется полным выпуском i -й отрасли. Выпуски удобно разместить в n -компонентную строку матрицы.

Количество единиц продукции i -й отрасли, которое необходимо затратить j -й отрасли для производства единицы своей продукции, обозначается и называется коэффициентом прямых затрат.

Определители квадратных матриц.

Определитель матрицы – это число, характеризующее квадратную матрицу А и тесно связанное с решением систем линейных уравнений. Определитель матрицы А обозначается или . Любой квадратной матрице А порядка n ставится в соответствие по определенному закону вычисленное некоторое число, называемое определителем, или детерминантом, n-го порядка этой матрицы. Рассмотрим определители второго и третьего порядков.

Пусть дана матрица

,

тогда ее определитель второго порядка вычисляется по формуле

.

Пример. Вычислить определитель матрицы А:

Ответ: -10.

Определитель третьего порядка вычисляется по формуле

Пример. Вычислить определитель матрицы В

.

Ответ: 83.

Вычисление определителя n-го порядка производится на основании свойств определителя и следующей теоремы Лапласа: определитель равен сумме произведений элементов любой строки (столбца) матрицы на их алгебраические дополнения:

Алгебраическое дополнение элемента равно , где - минор элемента , получаемый путем вычеркивания в определителе i-ой строки и j-го столбца.

Минором порядка элемента матрицы А называется определитель матрицы (n-1)-го порядка, полученный из матрицы А вычеркиванием i-ой строки и j-го столбца.

Пример . Найти алгебраические дополнения всех элементов матрицы А:

.

Ответ: .

Пример . Вычислить определитель матрицы треугольной матрицы:

Ответ: -15.

Свойства определителей:

1. Если какая-либо строка (столбец) матрицы состоит из одних нулей, то ее определитель равен 0.

2. Если все элементы какой-либо строки (столбца) матрицы умножить на число , то ее определитель умножится на это число.

3. При транспонировании матрицы ее определитель не изменится.

4. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

5. Если квадратная матрица содержит две одинаковые строки (столбца), то ее определитель равен 0.

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0.

7. Сумма произведения элементов какой-либо строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна 0.

8. Определитель матрицы не изменится, если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число.

9. Сумма произведений произвольных чисел на алгебраические дополнения элементов любой строки (столбца) равна определителю матрицы, полученной из данной заменой элементов этой строки (столбца) на числа .

10. Определитель произведения двух квадратных матриц равен произведению их определителей.

Обратная матрица.

Определение. Матрица называется обратной по отношению к квадратной матрице А, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица:

.

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица является квадратной того же порядка. Если определитель матрицы отличен от нуля, то такая квадратная матрица называется невырожденной.

Необходимое и достаточное условие существования обратной матрицы: Обратная матрица существует (и единственна) тогда и только тогда, когда исходная матрица невырожденная.

Первый алгоритм вычисления обратной матрицы:

1. Находим определитель исходной матрицы. Если определитель не равен нулю, то исходная матрица невырожденная и обратная матрица существует.

2. Находим матрицу , транспонированную к А.

3. Находим алгебраические дополнения элементов транспонированной матрицы и составляем из них присоединенную матрицу .

4. Вычисляем обратную матрицу по формуле: .

5. Проверяем правильность вычисления обратной матрицы, исходя из ее определения .

Пример.

.

Ответ: .

Второй алгоритм вычисления обратной матрицы:

Обратную матрицу можно вычислить на основании следующих элементарных преобразований над строками матрицы:

Перемена местами двух строк;

Умножение строки матрицы на любое число, отличное от нуля;

Прибавление к одной строке матрицы другой строки, умноженной на любое число, отличное от нуля.

Для того чтобы вычислить обратную матрицу для матрицы А, необходимо составить матрицу , затем путем элементарных преобразований привести матрицу А к виду единичной матрицы Е, тогда на месте единичной матрицы получим матрицу .

Пример. Вычислить обратную матрицу для матрицы А:

.

Составляем матрицу В вида:

.

Элемент = 1 и первую строку, содержащую данный элемент, назовем направляющими. Осуществим элементарные преобразования, в результате которых первый столбец преобразуется в единичный столбец с единицей в первой строке. Для этого ко второй и третьей строкам прибавим первую строку, соответственно умноженную на 1 и -2. В результате этих преобразований получим:

.

Окончательно получим

.

Откуда .

Ранг матрицы. Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы. Ранг матрицы А обозначается rang(A) или r(A).

Из определения следует: а) ранг матрицы не превосходит меньшего из ее размеров, т.е. r(А) меньше или равен минимальному из чисел m или n; б) r(A)=0 тогда и только тогда, когда все элементы матрицы А равны нулю; в) для квадратной матрицы n-го порядка r(A)=n тогда и только тогда, когда матрица А - невырожденная.

Пример : вычислить ранги матриц:

.

Ответ: r(A)=1. Ответ: r(A)=2.

Назовем элементарными преобразованиями матрицы следующие:

1) Отбрасывание нулевой строки (столбца).

2) Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.

3) Изменение порядка строк (столбцов) матрицы.

4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

5) Транспонирование матрицы.

Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Примеры : Вычислить матрицу , где

; ;

Ответ: .

Пример : Вычислить матрицу , где

; ; ; E – единичная матрица.

Ответ: .

Пример : Вычислить определитель матрицы

.

Ответ : 160.

Пример : Определить, имеет ли матрица А обратную, и если имеет, то вычислить ее:

.

Ответ : .

Пример : Найти ранг матрицы

.

Ответ : 2.

2.4.2. Системы линейных уравнений.

Система m линейных уравнений с n переменными имеет вид:

,

где , - произвольные числа, называемые соответственно коэффициентами при переменных и свободными членами уравнений. Решением системы уравнений называется такая совокупность n чисел (), при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений. Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Теорема Крамера: Пусть - определитель матрицы А, составленной из коэффициентов при переменных “х”, а - определитель матрицы, получаемой из матрицы А заменой j-го столбца этой матрицы столбцом свободных членов. Тогда, если , то система имеет единственное решение, определяемое по формулам: (j=1, 2, …, n). Эти уравнения получили названия формул Крамера.

Пример. Решить системы уравнений по формулам Крамера:

Ответы : (4, 2, 1). (1, 2, 3) (1, -2, 0)

Метод Гаусса – метод последовательного исключения переменных, заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних по номеру переменных, находятся все остальные переменные.

Пример : Решить системы уравнений методом Гаусса.

Ответы : (1, 1, 1). (1, -1, 2, 0). (1, 1, 1).

Для совместных систем линейных уравнений верны следующие утверждения:

· если ранг матрицы совместной системы равен числу переменных, т.е. r = n, то система уравнений имеет единственное решение;

· если ранг матрицы совместной системы меньше числа переменных, т.е. r

2.4.3. Технология выполнения операций над матрицами в среде EXCEL.

Рассмотрим некоторые аспекты работы с табличным процессором Excel, которые позволяют упростить расчеты, необходимые для решения оптимизационных задач. Табличный процессор – это программный продукт, предназначенный для автоматизации обработки данных табличной формы.

Работа с формулами. В программах электронных таблиц формулы служат для выполнения множества разнообразных расчетов. С помощью Excel можно быстро создать формулу. Формула состоит из трех основных частей:

Знак равенства;

Операторы.

Использование в формулах функций . Чтобы облегчить ввод формул, можно воспользоваться функциями Excel. Функции – это встроенные в Excel формулы. Для активизации той или иной формулы следует нажать кнопки Вставка , Функции. В появившемся окне Мастер функций слева содержится перечень типов функций. После выбора типа справа будет помещен список самих функций. Выбор функций осуществляется щелчком клавиши мыши на соответствующем названии.

При выполнении операций над матрицами, решении систем линейных уравнений, решении оптимизационных задач можно применять следующие функции Excel:

МУМНОЖ - умножение матриц;

ТРАНСП - транспонирование матрицы;

МОПРЕД - вычисление определителя матрицы;

МОБР - вычисление обратной матрицы.

Кнопка находится на панели инструментов. Функции для выполнения операций с матрицами находятся в категории Математические .

Умножение матриц с помощью функции МУМНОЖ . Функция МУМНОЖ возвращает произведение матриц (матрицы хранятся в массивах 1 и 2). Результатом является массив с таким же числом строк, как массив 1, и с таким же числом столбцов, как массив 2.

Пример. Найти произведение двух матриц А и В в среде Excel (см. рис 2.9):

; .

Введите матрицы А в ячейки А2:C3 и В в ячейки E2:F4.

Выделите диапазон ячеек для результата умножения – H2:I2.

Введите формулу умножения матриц =МУМНОЖ(A2:C3, E2:F4).

Нажмите клавиши CTRL+SHIFT+ENTER.

Вычисления обратной матрицы с помощью функции МОБР .

Функция МОБР возвращает обратную матрицу для матрицы, хранящейся в массиве. Синтаксис: МОБР(массив). На рис. 2.10 приведено решение примера в среде Excel.

Пример. Найти матрицу, обратную к данной:

.

Рисунок 2.9. Исходные данные для умножения матриц.

Рисунок 2.10. Исходные данные для вычисления обратной матрицы.

Квадратную матрицу -го порядка, у которой на главной диагонали стоят единицы, а все остальные элементы равны нулю, будем называть единичной матрицей и обозначать через или просто . Название «единичная матрица» связано со следующим свойством матрицы : для любой прямоугольной матрицы

имеют место равенства

.

Очевидно,

Пусть- квадратная матрица. Тогда степень матрицы определяется обычным образом:

Из сочетательного свойства умножения матриц следует:

Здесь , - произвольные целые неотрицательные числа.

Рассмотрим многочлен (целую рациональную функцию) с коэффициентами из поля :

Тогда под будем понимать матрицу

Так определяется многочлен от матрицы.

Пусть многочлен равен произведению многочленов и :

.

Многочлен получается из и путем почленного перемножения и приведения подобных членов. При этом используется правило перемножения степеней: . Так как все эти действия правомерны и при замене скалярной величины на матрицу , то

Отсюда, в частности,

т. е. два многочлена от одной и той же матрицы всегда перестановочны между собой.

Условимся -й наддиагональю (поддиагональю) в прямоугольной матрице называть ряд элементов, у которых (соответственно). Обозначим через квадратную матрицу -го порядка, у которой элементы первой наддиагонали равны единице, а все остальные элементы равны нулю. Тогда

, и т. д.;

В силу этих равенств если:

Многочлен относительно , то

.

Аналогично, если - квадратная матрица -го порядка, у которой все элементы первой поддиагонали равны единице, а все остальные, нулю, то

.

Предлагаем читателю проверить следующие свойства матриц и:

1° В результате умножения произвольной -матрицы слева на матрицу (матрицу ) -го порядка все строки матрицы подминаются (опускаются) на одно место вверх (вниз), первая (последняя) строка матрицы исчезает, а последняя (первая) строка произведения заполняется нулями. Так, например,

,

.

2° В результате умножения произвольной -матрицы справа на матрицу -го порядка все столбцы матрицы сдвигаются вправо (влево) на одно место, при этом последний (первый) столбец матрицы исчезает, а первый (последний) столбец произведения заполняется нулями. Так, например,

.

.

2. Квадратную матрицу будем называть особенной, если . В противном случае квадратная матрица называется неособенной.

Пусть - неособенная матрица (). Рассмотрим линейное преобразование с матрицей коэффициентов

Рассматривая равенства (23) как уравнения относительно и замечая, что определитель системы уравнений (23) по условию отличен от нуля, мы можем однозначно по известным формулам выразить через :

. (24)

Мы получили «обратное» преобразование для (23). Матрицу коэффициентов этого преобразования

мы назовем обратной матрицей для матрицы . Из (24) легко усмотреть, что

, (25)

где - алгебраическое дополнение (адъюнкта) элемента в определителе .

Так, например, если

и ,

.

Образуя составное преобразование из данного преобразования (23) и обратного (24) в одном и в другом порядке, мы в обоих случаях получаем тождественное преобразование (с единичной матрицей коэффициентов); поэтому

. (26)

В справедливости равенств (26) можно убедиться и непосредственным перемножением матриц и . Действительно, в силу (25)

.

Аналогично

.

Нетрудно видеть, что матричные уравнения

никаких других решений, кроме решения не имеют. Действительно, умножая обе части первого уравнения слева, а второго - справа на и используя сочетательное свойство произведения матриц, а также равенства (26), мы в обоих случаях получим:

Этим же способом доказывается, что каждое из матричных уравнений

где и - прямоугольные матрицы равных размеров, - квадратная матрица соответствующего размера, имеет одно и только одно решение:

И соответственно (29)

Матрицы (29) являются как бы «левым» и «правым» частными от «деления» матрицы на матрицу . Из (28) и (29) следует соответственно (см. стр. 22) и , т. е. . Сопоставляя с (28), имеем:

При умножении прямоугольной матрицы слева или справа на неособенную матрицу ранг исходной матрицы не изменяется.

Заметим еще, что из (26) вытекает , т.е.

Для произведения двух неособенных матриц имеем:

. (30)

3. Все матрицы -го порядка образуют кольцо с единичным элементом . Поскольку в этом кольце определена операция умножения на число из поля и существует базис из линейно независимых матриц, через которые линейно выражаются все матрицы -го порядка, то кольцо матриц -го порядка является алгеброй.

Все квадратные матрицы -го порядка образуют коммутативную группу относительно операции сложения. Все неособенные матрицы -го порядка образуют (некоммутативную) группу относительно операции умножения.

Квадратная матрица называется верхней треугольной (нижней треугольной), если равны нулю все элементы матрицы, расположенные под главной диагональю (над главной диагональю):

, .

Диагональная матрица является частным случаем как верхней, так и нижней треугольной матрицы.

Так как определитель треугольной матрицы равен произведению ее диагональных элементов, то треугольная (и, в частности, диагональная) матрица является неособенной только тогда, когда все ее диагональные элементы отличны от нуля.

Легко проверить, что сумма и произведение двух диагональных (верхних треугольных, нижних треугольных) матриц есть диагональная (соответственно верхняя треугольная, нижняя треугольная) матрица и что обратная матрица для неособенной диагональной (верхней треугольной, нижней треугольной) матрицы является матрицей того же типа. Поэтому

1° Все диагональные, все верхние треугольные, все нижние треугольные матрицы -го порядка образуют три коммутативные группы относительно операции сложения.

2° Все неособенные диагональные матрицы образуют коммутативную группу относительно умножения.

3° Все неособенные верхние (нижние) треугольные матрицы составляют группу (некоммутативную) относительно умножения

4. В заключение этого параграфа укажем на две важные операции над матрицами - транспонирование матрицы и переход к сопряженной матрице., то матрицы.

Если квадратная матрица совпадает со своей транспонированной () то такая матрица называется симметрической. Если же квадратная матрица совпадает со своей сопряженной (), то она называется эрмитовой. В симметрической матрице элементы, симметрично расположенные относительно главной диагонали, равны, а в эрмитовой они комплексно сопряжены между собой. Диагональные элементы эрмитовой матрицы всегда вещественны. Заметим, что произведение двух симметрических (эрмитовых) матриц, вообще говоря, не является симметрической (эрмитовой) матрицей. В силу 3° это имеет место только в том случае, когда данные две симметрические или эрмитовы матрицы перестановочны между собой.

Влечет за собой равенство .

Если квадратная матрица отличается множителем -1 от своей транспонированной () то такая матрица называется кососимметрической. В кососимметрической матрице любые два элемента, расположенные симметрично относительно главной диагонали, отличаются друг от друга множителем -1, а диагональные элементы равны нулю. Из 3° следует, что произведение двух перестановочных между собой кососимметрических матриц является симметрической матрицей.