Какова температура плавления меди и ее сплавов. Извлечение серебра из отходов кино-, фото-и рентгенопленки, фотопластинок и фотобумаги

С медью можно поставить несколько любопытных опытов, поэтому посвятим ей особую страничку.

Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту, то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl 2 .

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет, скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет. Значит, это диоксид углерода. В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь,- оксид меди.

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: CuCO 3 *Сu(ОН) 2 (основной карбонат меди). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной . Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит .

Давайте снова обратим внимание на почерневшую медную проволоку. Нельзя ли вернуть ей первоначальный блеск без помощи кислоты?

Налейте в пробирку аптечного нашатырного спирта, раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь, вода и азот. Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет. Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт. Насыпьте в пробирку немного нашатыря-хлорида аммония NH 4 Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом NH 4 OH , который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым - это улетучиваются частицы нашатыря. А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl 2 .

Именно из-за этой способности - восстанавливать металлическую медь из оксида - нашатырь и применяют при паянии. Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его «жало» окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря - и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше - чистого спирта) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция: медь восстановилась, а этиловый спирт, содержащийся в одеколоне, окислился до уксусного альдегида. Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.

О. Ольгин. "Опыты без взрывов"
М., "Химия", 1986

Предметы из меди, а также различные изделия, в состав которых она входит, получили широкое распространение в бытовых условиях. Поэтому многие задаются вполне стандартным вопросом: «Как расплавить медь самостоятельно?»

Имея представление о такой технологии, люди научились изготавливать разные предметы из чистого металла, а также получаемых из него сплавов – бронзы и латуни.

Плавление – это процесс, характеризующий постепенный переход металла из стандартного твердого состояния в жидкую консистенцию. Каждому металлическому соединению или металлу в чистом виде свойственная своя температура, под воздействием которой он начинает плавиться.

Немаловажным фактором в данном случае является то, какие примеси входят в состав расплавляемого соединения.

Так, медь начинает плавиться при температуре 1083 градусов по Цельсию. Если к ней добавить олово, то температура плавления снизится и составит примерно 930-1140 градусов по Цельсию.

В данном случае такое колебание обусловлено количеством олова, входящего в сплав. Соединение из меди и цинка плавится при еще более низкой температуре – 900-1050 градусов. Нагревание любых металлов связано с постепенным разрушением решетки, образованной из множества кристаллов.

С нагреванием температура плавления поднимается до максимально необходимой отметки, затем ее рост останавливается и сохраняется на достигнутом уровне до того момента, пока не расплавится весь металл, после чего начинает снижаться.

Остывание – обратный процесс изменения температуры. По мере охлаждения она падает и «замирает» на определенном уровне до тех пор, пока металл полностью не затвердеет.

Медь, разогретая до максимально возможной отметки, закипает при температуре, достигшей отметки в 2560 градусов. По внешнему виду ее кипение схоже с кипением любых жидких веществ, на поверхности которых по мере нагревания появляются пузырьки, и выделяется газ. Так, из меди в процессе кипения выходит углерод, образовавшийся в результате окисления и ее тесного контакта с воздухом.

Технология плавления меди получила широкое применение с древних времен, когда люди с помощью костра расплавляли металл для изготовления стрел, наконечников и другого оружия, и предметов быта.

Плавка меди в домашних условиях также возможна. Для этого понадобятся:

  • Тигель, где будет плавиться медь, и щипцы, необходимые для того, чтобы извлечь тигель из печи или снять его с огня.
  • Древесный уголь.
  • Муфельная печь (лучше, если в ней будет регулироваться температура нагрева).
  • Горн.
  • Обычный пылесос.
  • Форма, в которую выливается расплавленная жидкость.
  • Крюк, изготовленный из стальной проволоки.
  • Газовая горелка, если нет муфельной печи.

Алгоритм плавления включает несколько поэтапных шагов:

  1. Металл измельчить и пересыпать в тигель . Причем чем более мелкие фрагменты будут, тем скорее он достигнет расплавленного состояния. Тигель поставить в печь, раскаленную до максимально высокой температуры, необходимой для начала процесса плавления (здесь кстати придется регулятор температур). Во многих муфельных печах на двери вырезано окошко. Через него можно безопасно осуществлять наблюдение за процессом.
  2. По достижении медью жидкого окончательно расплавленного состояния, тигель с помощью щипцов нужно постараться как можно аккуратнее и скорее вынуть из печи . На поверхности жидкого вещества будет образована пленка, ее подвинуть к краю тигля, используя крюк из проволоки. Очищенный от пленки металл максимально быстро перелить в заранее подготовленную форму.
  3. Если муфельная печь отсутствует, осуществить плавку меди можно с применением обычной газовой горелки . Но тогда медь будет находиться в тесном контакте с воздухом, а сам процесс окисления пройдет значительно быстрее. Поэтому для предотвращения образования толстой пленки на поверхности металла, медь, когда она достигнет жидкого состояния, присыпают растолченным древесным углем.
  4. Расплавить медь и ее сплавы можно также с помощью горна . Для этого древесный уголь нужно хорошо раскалить и поместить на него тигель с металлом (предварительно измельчить медь). Для ускорения нагревательного процесса на уголь направить пылесос, включенный на режиме выдувания. Особое внимание стоит уделить наконечнику трубы. Она должна быть металлической, поскольку пластик расплавится под воздействием высокой температуры.

У чистой меди, в состав которой не входят другие соединения, достаточно плохая текучесть. Поэтому делать из нее сложное литье или мелкие детали не рекомендуется.

Тогда стоит использовать сплавы. Например, латунь, оттенок которой светлее остальных. Это говорит о том, что для ее плавления нужны менее высокие температуры.

ОКСИДИРОВАНИЕ ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ
СОСТАРИВАНИЕ МЕДИ, СЕРЕБРА, БРОНЗЫ ИЛИ ЛАТУНИ ВОДНЫМ РАСТВОРОМ
СЕРНОЙ ПЕЧЕНИ


Серная печень (Liver of sulphur / Liver of sulfur ) - полисульфид калия или полисульфид натрия.

Медь и серебро хорошо патинируются водным раствором серной печени, постепенно приобретая густой черный цвет, а бронза и латунь - слабые оттенки.

Спекание над огнем патинирующего состава и дало в старину название "печень" - от слова "печь", "спекать".


Патина - плёнка (налёт).
Патина бывает двух видов: естественная и искусственная.

Естественная патин а - это тонкая, но достаточно плотная и прочная оксидная плёнка, образующаяся на поверхности декоративных элементов в естественных условиях (под воздействием окружающей среды).

Естественную патину часто считают благородной и, как правило, стараются ее беречь.

Искусственная патина - налёт, образующийся на поверхности декоративных элементов после нанесения на их поверхность различных мастик, растворов и иных, предназначенных для этого, составов.

Оксидирование - создание оксидной плёнки на поверхности декоративного элемента в результате окислительно-восстановительной реакции. Оксидирование используют, в числе прочего, для получения красивого декоративного покрытия.

Для оксидирования меди, серебра, бронзы или латуни вам понадобится:
- сам предмет, поверхность которого будет обработана раствором серной печени (здесь для примера - омедненный лист);
- щепотка серной печени;
- стеклянная или пластиковая емкость;
- кисточка.


Растворите порошок в воде.
Наличие осадка на дне вполне допустимо и не влияет на результат оксидирования.


Кистью нанесите состав на медную деталь.

Не допускайте попадания состава для чернения на поверхность натуральных камней и жемчуга.
Это может привести к изменению структуры камня.


Не больше, чем через минуту, медь и серебро покрываются оксидной пленкой коричнево-фиолетовго цвета.
При повторном нанесении состава медная поверхность темнеет, вплоть до черного.


Отвлечемся от процесса:)
Такой получается оксидная пленка, если раствор серной печени был слишком слабым:


Продолжим... :)
Отшлифуйте деталь в местах, где того требует художественный замысел.


Завиток справа оксидирован с помощью серной печени и отшлифован дремелем.


Особенности хранения состава :

Состав в гранулах
Условия хранения: в сухом и защищенном от прямых солнечных лучей месте
в плотно закрытой емкости при температуре не выше 25 гр. С.
Срок хранения и использования: более 1 года.

Готовый водный раствор
Условия хранения: в плотно закрытой емкости в прохладном месте (к примеру, в холодильнике).
Срок хранения и использования: не более 1-2 дней.

Натуральный метод

1. Отварите 2-4 яйца в кипящей воде 15 минут.

2. Выньте вареные яйца из воды и положите на разделочную доску. Ложкой разомните яйца вместе со скорлупой.

3. Раздавленные яйца переложите в пластиковый пакет с застёжкой-молнией. Пакет должен быть достаточно большим, чтобы в нём поместилось изделие. В качестве альтернативного варианта можно взять большую воздухонепроницаемую ёмкость.

4. Медный предмет поместите в пластиковый пакет и закройте его. Если в пакет вы кладёте больше одного предмета, убедитесь, что они не касаются друг друга, чтобы они оксидировались со всех сторон. Яичные желтки обязательны, потому что в них содержится большое количество серы, окисляющей медь.

5. 20 минут спустя выньте медный предмет из пакета с помощью металлических щипцов. Вы заметите, что поверхность меди потемнела. Если вы хотите более тёмную патину, оставьте изделие в пакете на всю ночь.

6. Выньте изделие из пакета и ополосните слегка тёплой водой, чтобы смыть яйцо.

ПАТИНИРОВАНИЕ и ОКСИДИРОВАНИЕ меди

Для изменения цвета красноватого металла чаще всего пользуются ПАТИНИРОВАНИЕМ серной печенью и сернистым аммонием или ОКСИДИРОВАНИЕМ азотной кислотой.

ПАТИНИРОВАНИЕ серной печенью

В состав серной печени входят поташ и сера. Сера горюча, поэтому требует аккуратности в обращении. Ее пары с воздухом образуют взрывчатые смеси. Хранить серу нужно в сухом месте, изолированном от окислителей (серной кислоты, марганцевокислого калия, бертолетовой соли). Дозы поташа и серы могут быть различными. Чаще всего смешивают 1 часть серы с 2 частями поташа. Ссыпанные вместе, оба порошкообразных вещества тщательно перемешивают, помещают в металлический сосуд с ручкой и ставят нагреваться. Содержимое сосуда рекомендуется помешивать. Сплавление реактивов происходит в течение 15-25 мин. При реакции образуется темная масса серной печени. От высокой температуры сера тлеет сине-зеленым огнем. Это не должно вызывать беспокойства, так как патинирующие свойства серной печени сохранятся. Готовую горячую массу заливают водой, в которой растворяется образовавшийся расплав. Вода приобретает интенсивный черный цвет.


В горячий водный раствор серной печени опускают предварительно обработанные медные изделия. Если лист большой и в сосуд не входит, его поливают сверху раствором или смазывают мягкой кистью.

Медь чернеет очень быстро. От взаимодействия ионов серы с металлом образуется сульфид меди. Эта соль черного цвета, нерастворимая в воде и в разбавленных кислотах.

Реакция идет быстрее и ПАТИНИРОВАНИЕ будет качественнее, если пластинку предварительно нагреть. При этом следует пользоваться не открытым огнем, а электроплиткой. Затем пластинку промывают в теплой проточной воде и слегка протирают выпуклые места пемзовым порошком. В углублениях получается черный цвет, на наклонных поверхностях - сероватый, на выпуклостях - блестящая красная медь. Создается имитация под старину.

Водный раствор серной печени может воздействовать и на изделия из серебра или посеребренные. Они также покрываются черным налетом.

Оксидирование и патинирование меди, латуни и бронзы.

Некоторые химические реакции приводят к образованию на поверхности металлов окисей и закисей, т. е. кислородных соединений. Этот процесс называют оксидированием.

Нередко химические элементы, взаимодействуя с металлом или сплавом, способствуют появлению сернистых или хлористых соединений. Процесс образования таких соединений называют патинированием.

Если окунуть металлическое изделие в подготовленный раствор, оно буквально на глазах меняет цвет. Сверкающее металлическое изделие за несколько секунд приобретает облик старинного изделия.

Большинство химических соединений, которые применяют для патинирования и оксидирования металлов, токсичны и опасны для человека. Поэтому хранить их нужно в сосудах с притертыми пробками, а все работы, связанные с выделением ядовитых и горючих паров и газов, следует проводить в вытяжном шкафу. Дверцы шкафа должны быть слегка приоткрыты.

Перед изменением цвета металла необходимо провести некоторые подготовительные операции. Предмет очищают и обезжиривают, хорошо промывают и просушивают в опилках. Металлические художественные изделия и монеты ни в коем случае нельзя протирать полотенцем. Полотенцем стираются непрочные патинирующие пленки, не закрепленные лаком, остается влага в углубленных рельефах, ткань зацепляется за высокие выступы и может погнуть их. Опилки быстро и равномерно оттягивают воду от металлической поверхности.

Патина от серого до черного цвета

Приготовление серной печени:
Чтобы приготовить серную печень, нужно одну часть порошковой серы смешать с двумя частями поташа в жестяной банке и поставить на огонь. Через несколько минут порошок расплавится, потемнеет и начнет спекаться, постепенно приобретая темно-бурый цвет. (Кстати, спекание патинирующей массы и дало в старину название «печень» — от слов «печь», «спекать».)
Во время спекания пары серы могут загореться слабым сине-зеленым пламенем. Не сбивайте пламя — оно не ухудшит качество серной печени. Примерно через 15 минут прекратите спекание. Для продолжительного хранения серную печень растолките в порошок и засыпьте в стеклянную банку с плотной крышкой.

Метод №1
Применяется на:
Медь, стерлинговое серебро, и бронза или латунь (легкий оттенок). Не действует на нейзильбер.
Цвета:
На меди и серебре - разброс оттенков от пурпурного/голубого (трудно получить) до коричнево-серого, серого, черного. На латуни и бронзе - только нежно-золотистый.

Прочная и красивая патина образуется на поверхности меди, обработанной в водном растворе серной печени.

При составлении раствора в 1 л воды всыпьте 10—20 г порошка серной печени. Патина, полученная на металле раствором серной печени, прочная и красивая, глубокого черного цвета. Но не всегда нужна такая интенсивная окраска. Порой, чтобы придать старинный вид изделию из меди, достаточно нанести легкую серую патину. В литр воды насыпьте 2—3 г поваренной соли и 2—3 г серной печени. Опустите в раствор медную пластинку. После появления серого цвета необходимой тональности промойте пластинку чистой водой и высушите.

Метод №2
Для чернения медной вещи готовят насыщенный раствор сернокислой меди, добавляют в него нашатырный спирт до тех пор, пока смесь не примет яркий прозрачный синий цвет. Обрабатываемая медная вещь опускается в этот раствор на несколько минут, затем вынимается и слегка нагревается до тех пор, пока не почернеет.

Метод №3
Медная вещь, подлежащая чернению, очищается сначала тонкой наждачной бумагой, после чего до ее очищенной поверхности стараются не прикасаться пальцами. Затем она или погружается в жидкий раствор хлористой платины, или смачивается им при помощи кисти. Раствор этот, если он не имеет кислой реакции, слегка подкисляется соляной кислотой.

Метод №4
Очень прочное чернение медных изделий получается в том случае, если погрузить их в насыщенный раствор металлической меди в азотной кислоте и затем слегка нагреть.

Патина красно-коричневая

Водный раствор хлористого цинка и медного купороса окрашивает медь в красно-коричневый цвет. Смешайте одну часть медного купороса с одной частью хлористого цинка и разведите в двух частях воды. Достаточно нескольких минут, чтобы медь приобрела красно-коричневый цвет. После промывки и просушки поверхность металла протрите маслом.

Патина от светло-коричневого до черного

Почернение металла наблюдается при патинировании меди сернистым аммонием.
В литре воды разбавляют 20 г сернистого аммония. В полученный раствор опускают изделие или поливают сверху и протирают кистью. Работу осуществляют в вытяжном шкафу. Находящиеся в водном растворе сернистого аммония ионы серы взаимодействуют с ионами меди. Образуется сульфид меди черного цвета.
Интенсивность патинирующего налета на металле может быть различного оттенка, от светло-коричневого до черного. Регулируют цвет, изменяя температуру нагревания пластинки перед патинированием.

Патина светло-коричневая

Грамм на литр:
дихромат натрия - 124
азотная кислота (плотность 1.40 грсм3) - 15,5
соляная кислота (1,192)- 4,65
сульфид аммония 18% раствор - 3-5
наносят кистью сразу после приготовления, через 4-5 часов смыть и повторить после просыхания 2 раза, полировать сухой ветошью.

Патина от темно-коричневой до тепло-черной патины

Грамм на литр:
персульфат аммония - 9,35
едкий натр - 50,0
на 5-25 мин в ванну с раствором, нагретым до 90 -95 градусов. промыть, осушить, повторить 2-3 раза

Патина от оливкового до коричневого цвета

Грамм на литр:
бертолетова соль - 50*70
нитрат меди - 40*50
хлорид аммония - 80*100
на 10-15 мин в ванну с подогретым раствором до 60-70 градусов.
получаемые пленки обладают механической прочностью и стойкостью к коррозии

Патина коричнево-черная

Грамм на литр:
молибдат аммония - 10
аммиак 25% водный раствор - 7
раствор должен быть подогрет до 60 - 70 градусов

Патина золотистого цвета

Грамм на литр:
сульфид меди - 0,6
едкий натр - 180
молочный сахар - 180

Раствор щелочи и лактозы готовят отдельно и только потом сливают вместе, кипятят 15 минут и добавляют сульфид меди.
изделие поместить в подогретый до 90 гр. раствор на 15 мин.

Патина золотисто-коричневого цвета с малиновой побежалостью и умеренным блеском

После очистки медных монет можно создать на них искусственную патину, поместив в раствор 50 г медного купороса и 5 г марганцовокислого калия на 1 литр воды, нагрев его до температуры 70-80С и продержав там до получения нужного цвета.

Патина зеленого цвета

Окрасить в зеленый цвет поверхность медных, латунных или бронзовых изделий можно различными способами.

Метод №1
Поверхность вещей при помощи губки смазывают сначала сильно разведенным раствором азотнокислой меди с добавлением небольшого количества поваренной соли. Затем, когда вещь просохнет, ее точно таким же образом смазывают раствором из 1 части щавелевокислого калия и 5 частей нашатыря в 94 частях слабого уксуса. Снова дают просохнуть и опять смазывают первым раствором; потом, по просыхании, опять вторым раствором и т.д. попеременно до тех пор, пока окрашивание не приобретет надлежащую силу.
Перед смазыванием намоченную в растворе губку следует сильно выжать так, чтобы она была влажной, но не мокрой. По окончании окраски поверхности вещи тщательно растирают жесткими волосяными щетками, особенно в углублениях и щелях. После 8-14 дней работы получается буровато-зеленоватое окрашивание.

Метод №2
Вещи в несколько приемов натирают суконкой, пропитанной неочищенной олеиновой кислотой (продукт, получаемый на стеариновых заводах). На поверхности вещей образуется сначала темно-зеленый слой олеиновокислой меди, которая под влиянием кислорода и влаги воздуха постепенно превращается в более светло-зеленую углекислую медь.
Процесс значительно ускоряется, если олеиновую кислоту предварительно довольно долго настаивать на стружках меди, а вещи после каждого смазывания такой кислотой, после просыхания смазки, слегка (не более нескольких капель!) опрыскивать при помощи пульверизатора водным раствором углекислого аммония.

ГРАФИЧЕСКИЕ ТЕСТЫ
ПО ХИМИИ

Окончание. Начало см. в № 37/2004

18. На рисунке представлены изменения количества веществ (, моль) реагентов и продуктов реакции получения оксида серы(VI) из оксида серы(IV) по мере достижения равновесия. Веществами А, Б и В являются соответственно:

1) SO 3 , SO 2 и О 2 ;
2) SO 2 , О 2 и SO 3 ;
3) SO 3 , О 2 и SO 2 ;
4) O 2 , SО 2 и SO 3 .

Ответ . 1).

19. Температура кипения гидрида германия GeH 4 равна –90 °С. Изобразите на графике примерную зависимость температуры кипения t кип гидридов элементов IVa группы периодической системы – СН 4 , SiН 4 , GeН 4 и SnН 4 – от молярной массы M соединений.
Ответ . Значения температур кипения и молярных масс гидридов (см. табл.) позволяют точно построить график зависимости t кип от М .

Гидрид t кип,
°С
Значения М,
г/моль
СН 4 –161,5 16
SiН 4 –111,9 32
GeН 4 –90 77
SnН 4 –52 123

20. Прочность соединений в ряду

Н 2 О – Н 2 S – Н 2 Sе – Н 2 Те

изменяется, как показано на графике. Укажите верный вариант ответа.

Ответ. 4).

21. Зная, что температура кипения воды при атмосферном давлении равна 100 °С, а теллуроводорода –2 °С, покажите на графике, как примерно будет зависеть t кип гидридов элементов VIa группы – H 2 O, H 2 S, H 2 Se и H 2 Te – от их молярной массы М .
Ответ. Используя точные значения t кип из таблицы, построим заданный график.

22. Изучите представленные на рисунке зависимости растворимости веществ А, Б, В, Г от температуры. Наибольшую растворимость при 30 °С имеет вещество:

1) А;
2) Б;
3) В;
4) Г.

Ответ . 2).

23. Используя приведенный график зависимости выхода SO 3 от температуры, можно определить, что окисление SО 2 в SО 3 будет идти с выходом 60% при температуре... °С.

Ответ . Примерно 680 °С.

24. График показывает зависимость скорости коррозии цинка от рН среды. Наиболее устойчив металлический цинк к коррозии в области значений рН:

1) 2–4;
2) 6–8;
3) 10–12;
4) 12–14.

Ответ . 3). В области значений рН = 10–12 цинк в наименьшей cтепени подвергается коррозии.

25. Медную пластинку внесли в нагретую до температуры красного каления печь. Изменение массы пластинки во времени при окислении меди до оксида меди(II) отражает график (см. с. 6 ):

Ответ . 3). (2Сu + О 2 = 2СuО).

26. Силикатные стекла представляют собой:
а) кристаллические тела;
б) аморфные тела.
Изменению их объема V от температуры t в процессе нагревания соответствует график:

Ответ . б); 2).

27. На приведенном далее графике показаны температуры кипения четырех соединений.
Температура кипения воды значительно отличается от температур кипения других приведенных водородных соединений, т.к.:
1) в молекуле воды между атомами ковалентная связь;
2) в молекуле воды между атомами ионная связь;
3) между молекулами воды возникает водородная связь;
4) между молекулами воды действуют вандерваальсовы силы притяжения.

Ответ. 3).

28. График показывает растворимость вещества X в воде в зависимости от температуры.
Вещество X массой 50 г растворили в 100 г воды при 100 °С, после чего приготовленный раствор стали охлаждать. Раствор становится насыщенным при температуре (°С):

1) 30;
2) 50;
3) 60;
4) 70.

Ответ. 4). Растворимость 50 г вещества в 100 г воды на основании графика отвечает температуре 70 °С.

29. На рисунке показаны энергетические диаграммы двух различных механизмов одной и той же реакции. Энергия активации реакции, идущей в присутствии катализатора, имеет значение, соответствующее:

1) А;
2) Б;
3) В;
4) Г.

Ответ. 2).

30. При взаимодействии 1 моль газообразного водорода с 1 моль кристаллического йода затрачивается примерно 50 кДж теплоты. Представьте графически зависимость изменения энергии замкнутой системы от времени реакции Н 2 с I 2 в случаях:
1) при отсутствии катализатора;
2) в присутствии катализатора.

Ответ .

31. Взаимодействие газообразных водорода и йода описывается уравнением

Н 2 (г.) + I 2 (г.) + Q = 2НI (г.)

и отражено на приведенном далее рисунке в виде зависимостей концентраций с реагирующих и образующегося компонентов от времени . Через 2 мин после начала реакции в системе произошло изменение (укажите какое):
1) повысилось давление;
2) повысилась температура;
3) в реакционную систему добавлен водород;
4) в реакционную систему добавлен йод.

Ответ. 4).

32. Школьник провел следующий опыт. В прибор для измерения электрической проводимости растворов он налил 30 мл децимолярного раствора хлорида бария. Затем он включил прибор в сеть и из бюретки по каплям стал добавлять раствор сульфата натрия такой же концентрации. По мере прибавления сульфата натрия лампочка прибора светила все более тускло, а через некоторое время совсем погасла. При дальнейшем прибавлении раствора сульфата натрия лампочка снова стала светить ярче. Школьник аккуратно фиксировал данные наблюдения в рабочий журнал и получил графическую зависимость. Нарисуйте этот график в виде зависимости электрической проводимости от объема раствора Na 2 SO 4 в см 3 .

Ответ . BaCl 2 + Na 2 SO 4 = BaSO 4 + 2NaCl;
далее при избытке электролита Na 2 SO 4:

Na 2 SO 4 = 2Na + + .

33. Бертолетову соль сильно нагревают в открытой кварцевой трубке до тех пор, пока она полностью не разложится. Правильно показывает изменение массы m вещества в реакционной трубке во времени график:

Ответ . 1).

По уравнению реакции при термическом разложении 1 моль бертолетовой соли масса остатка становится меньше исходной массы почти в полтора раза (122,5/74,5 = 1,64). Газообразный кислород улетает. Таким образом, если на графике отложить исходную массу бертолетовой соли m 1 и массу оставшегося после разложения остатка m 2 , то при нагревании в течение некоторого времени () будет происходить разложение, сопровождающееся уменьшением массы. После полного разложения бертолетовой соли масса остатка не будет меняться, т.к. образовавшийся в результате реакции хлорид калия при нагревании не разлагается.

34. Навеску перманганата калия массой 30 г внесли в печь, нагретую до температуры разложения перманганата. Постройте график, отражающий изменение массы навески m в зависимости от времени прокаливания .
Ответ . Уравнение реакции разложения перманганата калия:

Масса навески уменьшится на массу выделившегося при разложении кислорода, а именно:

Отсюда х = 30 32/316 = 3,0 г.

Строим график, отражающий изменение массы навески m в зависимости от времени
прокаливания .

Безопасность

    Перед началом опыта наденьте защитные перчатки и очки.

    Проводите эксперимент на подносе.

Общие правила безопасности

  • Не допускайте попадания химических реагентов в глаза или рот.
  • Не допускайте к месту проведения экспериментов людей без защитных очков, а также маленьких детей и животных.
  • Храните экспериментальный набор в месте, недоступном для детей младше 12 лет.
  • Помойте или очистите всё оборудование и оснастку после использования.
  • Убедитесь, что все контейнеры с реагентами плотно закрыты и хранятся по правилам после использования.
  • Убедитесь, что все одноразовые контейнеры правильно утилизированы.
  • Используйте только оборудование и реактивы, поставляемые в наборе или рекомендуемые текущими инструкциями.
  • Если вы использовали контейнер для еды или посуду для проведения экспериментов, немедленно выбросьте их. Они больше не пригодны для хранения пищи.

Информация о первой помощи

  • В случае попадания реагентов в глаза тщательно промойте глаза водой, при необходимости держа глаз открытым. Немедленно обратитесь к врачу.
  • В случае проглатывания промойте рот водой, выпейте немного чистой воды. Не вызывайте рвоту. Немедленно обратитесь к врачу.
  • В случае вдыхания реагентов выведите пострадавшего на свежий воздух.
  • В случае контакта с кожей или ожогов промывайте поврежденную зону большим количеством воды в течение 10 минут или дольше.
  • В случае сомнений немедленно обратитесь к врачу. Возьмите с собой химический реагент и контейнер от него.
  • В случае травм всегда обращайтесь к врачу.
  • Неправильное использование химических реагентов может вызвать травму и нанести вред здоровью. Проводите только указанные в инструкции эксперименты.
  • Данный набор опытов предназначен только для детей 12 лет и старше.
  • Способности детей существенно различаются даже внутри возрастной группы. Поэтому родители, проводящие эксперименты вместе с детьми, должны по своему усмотрению решить, какие опыты подходят для их детей и будут безопасны для них.
  • Родители должны обсудить правила безопасности с ребенком или детьми перед началом проведения экспериментов. Особое внимание следует уделить безопасному обращению с кислотами, щелочами и горючими жидкостями.
  • Перед началом экспериментов очистите место проведения опытов от предметов, которые могут вам помешать. Следует избегать хранения пищевых продуктов рядом с местом проведения опытов. Место проведения опытов должно хорошо вентилироваться и находиться близко к водопроводному крану или другому источнику воды. Для проведения экспериментов потребуется устойчивый стол.
  • Вещества в одноразовой упаковке должны быть использованы полностью или утилизированы после проведения одного эксперимента, т.е. после открытия упаковки.

Часто задаваемые вопросы

Для чего мы фиксируем пластины?

Фиксируя пластины в пластилине, мы предотвращаем их соприкосновение во время эксперимента, и, следовательно, исключаем возможность короткого замыкания. А ведь оно очень опасно: батарейки перегреются и могут даже взорваться! Да и опыт, что важно, не получится.

Не получился рисунок на пластине. Что делать?

Первым делом проверьте правильность соединения проводков в цепи. Красный крокодил должен крепиться к красному проводу держателя батареек, а чёрный – к чёрному.

Затем осмотрите батарейки: правильно ли они вставлены в держатель? Если полярность батареек соблюдена, попробуйте взять новые.

Также обратите внимание на положение крокодилов: они не должны касаться раствора.

Другие эксперименты

Пошаговая инструкция

    Нарисуйте или напишите что-нибудь маркером на медной пластине, не заходя на «ушко».

    Закрепите красный крокодил на «ушке» медной пластины.

    Возьмите новую медную пластину и закрепите на её «ушке» чёрный крокодил.

    Возьмите кусочек тёмного пластилина и хорошо разомните его. Прикрепите пластилин ко дну пластикового стаканчика.

    Вылейте весь 0.4М раствор сульфата меди CuSO 4 в пластиковый стаканчик.

    Подсоедините свободные концы крокодилов к держателю батареек: чёрный крокодил к чёрному проводу, красный – к красному. Вставьте в держатель 2 батарейки «ААА».

    Закрепите медные пластины в пластилине так, чтобы они не соприкасались.

    Долейте воды так, чтобы крокодилы не касались раствора. Подождите 30 минут.

    Достаньте пластины из раствора.

    Промойте водой разрисованную пластину, сотрите маркер салфеткой.

    На медной пластине остался вытравленный рисунок!

Утилизация

Твёрдые отходы эксперимента утилизируйте вместе с бытовым мусором. Растворы слейте в раковину и затем тщательно промойте её водой.

Что произошло

Как на медной пластинке возникает барельеф?

Что такое барельеф ? Это вид скульптуры или архитектурный элемент, в котором все части выступают над плоскостью фона не более чем наполовину.

Химия в какой-то степени выделяется среди других естественнонаучных дисциплин тем, что в ней достаточно часто синтезируют вещества, создают новые материалы и только потом изучают их свойства. Хотя в этом опыте не создаётся ни новых веществ, ни новых материалов, он позволяет нам приобщиться к тонкой грани между искусством и наукой, создавая барельеф с помощью электрохимической реакции.

Итак, в этом опыте есть два проводящих электричество тела – две медные пластинки – и раствор сульфата меди, в который они погружены. Сам раствор тоже способен проводить электричество, которое по определению является упорядоченным движением заряженных частиц. В растворе сульфат меди полностью диссоциирует , то есть распадается на ионы:

CuSO 4 ↔ Cu 2+ + SO 4 2–

Через все части нашей установки может проходить электричество, которое является движущей силой всех изменений, протекающих во время опыта. Суть этих изменений достаточно проста: атомы меди «перескакивают» с пластинки с нанесённым рисунком на чистую пластинку под действием электричества. Это происходит не напрямую, а путём двух электрохимических реакций:

Cu 0 – 2e – → Cu 2+

Cu 2+ + 2e – → Cu 0

Пластинка с рисунком под действием электричества имеет на себе избыточный положительный заряд. Поэтому атомы меди могут переходить с поверхности пластинки в раствор, превращаясь в ионы меди (первая реакция).

В то же время на пластинке без рисунка под действием электричества образуется избыточный отрицательный заряд. Ионы меди из раствора приближаются к нему, получают пару электронов и остаются на пластинке в виде металлической меди (вторая реакция).

Растворение меди на первой пластинке происходит по всей поверхности, погружённой в раствор сульфата меди. Исключение составляют лишь участки с рисунком: маркер не даёт атомам меди контактировать с раствором. Таким образом и возникает барельеф: пластинка «тает» везде, кроме закрашенного участка. Можно сказать, что для создания этого барельефа мы использовали электрохимическую резьбу, удалив тонкий слой меди с его плоского фона.

Как без ножниц разрезать металл?

Как уже упоминалось в основной части, барельеф на поверхности пластинки был практически «вырезан», ведь с его фона удалялась медь. Этот же подход можно использовать и для того, чтобы сделать в медной пластинке сквозную дыру! В таком случае необходимо будет обклеить пластину скотчем со всех сторон, оставив один край для прикрепления «крокодила» и проделав в липкой ленте одно небольшое отверстие. Затем продолжим опыт в той же последовательности, что и в инструкции, но теперь оставим на реакцию не 30 минут, а 5 или более часов. Тогда «растворение» меди будет происходить только через это отверстие, что и приведёт к возникновению сквозной дыры в самой пластине.