Использование радиоактивности в мирных целях. Реферат: Радиация, использование и проблемы

Какое именно ядро в радиоактивном веществе распадется первым, какое — следующим, какое — последним? Физики утверждают, что узнать это невозможно: распад того или иного ядра радионуклида — событие случайное. Вместе с тем поведение радиоактивного вещества в целом подчиняется четким закономерностям.

Узнаём о периоде полураспада

Если взять закрытую стеклянную колбу, содержащую некоторое количество Радона-220, окажется, что примерно через 56 с количество атомов Радона в колбе уменьшится в два раза, в течение следующих 56 с — еще в два раза и т. д. Таким образом, понятно, почему интервал времени 56 с называют периодом полураспада Радона-220.

период полураспада T 1/2 — это физическая величина, которая характеризует радионуклид и равна времени, в течение которого распадается половина имеющегося количества ядер данного радионуклида.

Период полураспада некоторых радионуклидов

Единица периода полураспада в СИ — секунда:

У каждого радионуклида — свой период полураспада (см. таблицу).

Образец содержит 6,4 · 10 20 атомов Йода-131. Сколько атомов Йода-131 будет в образце через 16 суток?

Даём определение активности радиоактивного источника

И Уран-238, и Радий-226 являются α-радиоактивными (их ядра могут спонтанно распадаться на α-частицу и соответствующее дочернее ядро).

Из какого образца за 1 с вылетит больше α-частиц, если число атомов Урана-238 и Радия-226 одинаково?

Надеемся, вы правильно ответили на вопрос и, учитывая, что периоды полураспада данных радионуклидов отличаются почти в 3 млн раз, установили, что за одно и то же время в образце радия произойдет намного больше α-распадов, чем в образце урана.

Физическую величину, численно равную количеству распадов, происходящих в радиоактивном источнике за единицу времени, называют активностью радиоактивного источника.

Активность радиоактивного источника обозначают символом A. Единица активности в СИ — беккерель.

Рис. 24.1. График зависимости активности Радия-226 от времени. Период полураспада Радия-226 — 1600 лет

История открытия искусственных радиоактивных изотопов

Первый искусственный радиоактивный изотоп (15P) был получен в 1934 г. супругами Фредерикоми Ирен Жолио-Кюри. Облучая α-частицами алюминий, они наблюдали излучение нейтронов, то есть происходила следующая ядерная реакция:

Итальянский физик Энрико Фермиизвестен несколькими достижениями, но свою высшую награду — Нобелевскую премию — он получил за открытие искусственной радиоактивности, вызванной облучением вещества медленными нейтронами. Сейчас метод облучения нейтронами широко применяют в промышленности для получения радиоактивных изотопов.

1 Бк — это активность такого радиоактивного источника, в котором за 1 с происходит 1 акт распада:

1 Бк — это очень малая активность, поэтому используют внесистемную единицу активности — кюри (Ки):

В честь каких ученых названы указанные единицы? Какие открытия они сделали?

Если образец содержит атомы только одного радионуклида, то активность этого образца можно определить по формуле:

где N — число атомов радионуклида в образце на данный момент времени; λ — постоянная радиоактивного распада радионуклида (физическая величина, являющаяся характеристикой радионуклида и связанная с периодом полураспада соотношением:

Со временем количество нераспавшихся ядер радионуклидов в радиоактивном образце уменьшается, поэтому уменьшается и активность образца (рис. 24.1).


Узнаём о применении радиоактивных изотопов

Наличие в объекте радионуклидов можно выявить по излучению. Вы уже выяснили, что интенсивность излучения зависит от вида радионуклида и его количества, которое со временем уменьшается. Все это положено в основу использования радиоактивных изотопов, которые физики научились получать искусственно. Сейчас для каждого химического элемента, встречающегося в природе, получены искусственные радиоактивные изотопы.

Можно выделить два направления использования радиоактивных изотопов.

Рис. 24.2. Чтобы выяснить, как растения усваивают фосфорные удобрения, в эти удобрения добавляют радиоактивный изотоп Фосфора, затем исследуют растения на радиоактивность и определяют количество усвоенного фосфора

Рис. 24.3. Использование γ-излучения для лечения онкозаболеваний. Чтобы γ-лучи не уничтожали здоровые клетки, используют несколько слабых пучков γ-лучей, которые фокусируются на опухоли

1. Использование радиоактивных изотопов в качестве индикаторов. Радиоактивность является своеобразной меткой, с помощью которой можно определить наличие элемента, проследить за поведением элемента во время физических и биологических процессов и т. д. (см., например, рис. 24.2).

2. Использование радиоактивных изотопов как источников γ-излучения (см., например, рис. 24.3).

Рассмотрим несколько примеров.

Выясняем, как используют радиоактивные изотопы для диагностики заболеваний

Организм человека имеет свойство накапливать в своих тканях определенные химические вещества. Известно, например, что щитовидная железа накапливает йод, костная ткань — фосфор, кальций и стронций, печень — некоторые красители и т. д. Скорость накопления веществ зависит от состояния здоровья органа. Например, при базедовой болезни активность щитовидной железы резко возрастает.

За количеством йода в щитовидной железе удобно следить при помощи его γ-радиоактивного изотопа. Химические свойства радиоактивного и стабильного йода не отличаются, поэтому радиоактивный Йод-131 будет накапливаться так же, как и его стабильный изотоп. Если щитовидная железа в норме, то через некоторое время после введения в организм Йода-131 γ-излучение от него будет иметь определенную оптимальную интенсивность. А вот если щитовидная железа функционирует с отклонением от нормы, то интенсивность γ-излучения будет аномально высокой или, наоборот, низкой. Аналогичный метод применяют для исследования обмена веществ в организме, выявления опухолей и др.

Понятно, что, используя указанные методы диагностики, необходимо тщательно дозировать количество радиоактивного препарата, чтобы внутреннее облучение оказывало минимальное негативное воздействие на организм человека.

Определяем возраст древних предметов

Рис. 24.4. Полученный из молодого дерева 1 г углерода имеет активность 14-15 Бк (излучает 14-15 β-частиц в секунду). Через 5700 лет после гибели дерева количество β-распадов в секунду уменьшается вдвое

Рис. 24.5. Самую распространенную медицинскую продукцию: шприцы, системы переливания крови и т. п. — перед отправкой потребителю тщательно стерилизуют с использованием γ-излучения

В атмосфере Земли всегда имеется некоторое количество β-радиоактивного Карбона-14 (^C), который образуется из Нитрогена в результате ядерной реакции с нейтронами. В составе углекислого газа этот изотоп поглощается растениями, а через них — животными. Пока животное или растение живы, содержание радиоактивного Карбона в них остается неизменным. После прекращения жизнедеятельности количество радиоактивного Карбона в организме начинает уменьшаться, уменьшается и активность β-излучения. Зная, что период полураспада Карбона-14 составляет 5700 лет, можно определить возраст археологических находок (рис. 24.4).

Применяем γ-излучение в технике

Особое значение в технике имеют гамма-дефектоскопы, с помощью которых проверяют, например, качество сваренных соединений. Если мастер, приваривая петли к воротам, допустил брак, через некоторое время петли отвалятся. Это неприятно, но ситуация поправима. А вот если брак случился при сварке элементов конструкции моста или ядерного реактора, трагедия неминуема. Благодаря тому что γ-лучи по-разному поглощаются массивной сталью и сталью с пустотами, гамма-дефектоскоп «видит» трещины внутри металла, а следовательно, выявляет брак еще на стадии изготовления конструкции.

Уничтожаем микробы с помощью радиации

Известно, что определенная доза облучения убивает организмы. Но ведь не все организмы полезны человеку. Так, медики постоянно работают над тем, чтобы избавиться от болезнетворных микробов. Вспомните: в больницах моют пол со специальными растворами, облучают помещение ультрафиолетом, обрабатывают медицинские инструменты и т. д. Такие процедуры называют дезинфекцией и стерилизацией.

Поставить процесс стерилизации на промышленную основу позволили особенности γ-излучения (рис. 24.5). Такая стерилизация осуществляется в специальных установках

с надежной защитой от проникающей радиации. В качестве источника γ-лучей используют искусственно созданные изотопы Кобальта и Цезия

Учимся решать задачи

Задача. Определите массу Радия-226, если его активность составляет 5 Ки. Постоянная радиоактивного распада Радия-226 равна 1,37 · 10 11 с 1 .

Анализ физической проблемы, поиск математической модели

Для решения задачи воспользуемся формулой для определения активности: A = AN. Зная активность, выясним количество N атомов Радия. Массу вещества можно определить, умножив число атомов на массу одного атома: m = N ■ m 0 .

Из курса химии вы знаете:

1 моль вещества содержит N A = 6,02 10 атомов;

молярная масса вещества (масса 1 моль).

Масса атома

Подводим итоги

Время, в течение которого распадается половина имеющегося количества ядер данного радионуклида, называют периодом полураспада Т 1/2 . Период полураспада является характеристикой данного радионуклида. Физическую величину, которая численно равна количеству распадов, происходящих в данном радиоактивном источнике за единицу времени, называют активностью радиоактивного источника. Если источник содержит атомы только одного радионуклида, активность A источника можно определить по формуле A = AN, где N — количество атомов радионуклида в образце; λ — постоянная радиоактивного распада радионуклида. Единица активности в СИ — беккерель (Бк).

Со временем активность радиоактивного образца уменьшается, и это используют для определения возраста археологических находок.

Искусственные изотопы применяют для стерилизации медицинских изделий, диагностики и лечения заболеваний, выявления дефектов в металлах и др.


Контрольные вопросы

1. Дайте определение периода полураспада. Что характеризует эта физическая величина? 2. Что такое активность радиоактивного источника? 3. Какова единица активности в СИ? 4. Как активность радионуклида связана с его постоянной радиоактивного распада? 5. Изменяется ли со временем активность радионуклидного образца? Если изменяется, то почему и как? 6. Приведите примеры использования радиоактивных изотопов.

Упражнение № 24

1. Имеется одинаковое количество ядер Йода-131, Радона-220 и Урана-235. Какой радионуклид имеет наибольший период полураспада? Активность какого образца на данный момент времени наибольшая? Поясните ответ.

2. В образце содержится 2 · 10 20 атомов Йода-131. Определите, сколько ядер Йода в образце распадется в течение часа. Активность Йода-131 на протяжении этого времени считайте неизменной. Постоянная радиоактивного распада Йода-131 равна 9,98 · 10 -7 с -1 .

3. Период полураспада радиоактивного Карбона-14 составляет 5700 лет. Во сколько раз уменьшилось количество атомов Карбона-14 в сосне, срубленной 17 100 лет назад?

4. Определите период полураспада радионуклида, если за интервал времени 1,2 с количество распавшихся ядер составило 75 % их начального количества.

5. На данный момент в радиоактивном образце содержится 0,05 моль Радона-220. Определите активность Радона-220 в образце.

6. На сегодня одними из самых важных считаются исследования обмена веществ в организме человека с помощью радиоактивных изотопов. В частности, выяснилось, что за сравнительно небольшое время организм почти полностью восстанавливается. Воспользуйтесь дополнительными источниками информации и узнайте об этих исследованиях больше.

Физика и техника в Украине

Национальный научный центр «Харьковский физико-технический институт»

(ХФТИ) — всемирно известный научный центр. Основан в 1928 г. по инициативе академика А. Ф. Иоффе как Украинский физико-технический институт с целью исследований в области ядерной физики и физики твердого тела.

Уже в 1932 г. в институте был достигнут выдающийся результат — осуществлено расщепление ядра атома Лития. Позднее в лабораторных условиях получены жидкие водород и гелий, построен первый трехкоординатный радиолокатор, проведены первые исследования высоковакуумной техники, что послужило толчком к развитию нового физико-технологического направления — вакуумной металлургии. Ученые института сыграли важную роль в решении проблем использования атомной энергии.

В разные годы в ННЦ ХФТИ работали выдающиеся физики: И. В. Обреимов, Л. Д. Ландау, И. В. Курчатов, К. Д. Синельников, Л. В. Шубников, А. И. Лейпунский, Е. М. Лифшиц, И. М. Лифшиц, А. К. Вальтер, Б. Г. Лазарев, Д. Д. Иваненко, А. И. Ахиезер, В. Е. Иванов, Я. Б. Файнберг, Д. В. Волков и др. В институте были созданы научные школы, известные во всем мире.

В ННЦ ХФТИ расположены крупнейший в СНГ линейный ускоритель электронов и совокупность термоядерных комплексов «Ураган».

Генеральный директор центра — известный украинский физик, академик НАНУ Николай Федорович Шульга.

Это материал учебника

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.

1. Биологические действия. Радиоактивные излучения гибельно действуют на живые клетки. Механизм этого действия связан с ионизацией атомов и разложением молекул внутри клеток при прохождении быстрых заряженных частиц. Особенно чувствительны к воздействию излучений клетки, находящиеся в состоянии быстрого роста и размножения. Это обстоятельство используется для лечения раковых опухолей.

Для целей терапии употребляют радиоактивные препараты, испускающие излучение, так как последние без заметного ослабления проникают внутрь организма. При не слишком больших дозах облучения раковые клетки гибнут, тогда как организму больного не причиняется существенного ущерба. Следует отметить, что радиотерапия рака, так же как и рентгенотерапия, отнюдь не является универсальным средством, всегда приводящим к излечению.

Чрезмерно большие дозы радиоактивных излучений вызывают тяжелые заболевания животных и человека (так называемая лучевая болезнь) и могут привести к смерти. В очень малых дозах радиоактивные излучения, главным образом излучение, оказывают, напротив, стимулирующее действие на организм. С этим связан целебный эффект радиоактивных минеральных вод, содержащих небольшие количества радия или радона.

2. Светящиеся составы. Люминесцирующие вещества светятся под действием радиоактивных излучений (ср. §213). Прибавляя к люминесцирующему веществу (например, сернистому цинку) очень небольшое количество соли радия, приготовляют постоянно светящиеся краски. Эти краски, будучи нанесены на циферблаты и стрелки часов, прицельные приспособления и т.п., делают их видимыми в темноте.

3. Определение возраста Земли. Атомная масса обыкновенного свинца, добываемого из руд, не содержащих радиоактивных элементов, составляет . Как видно из рис. 389, атомная масса свинца, образующегося в результате распада урана, равна . Атомная масса свинца, содержащегося в некоторых урановых минералах, оказывается очень близкой к . Отсюда следует, что эти минералы в момент образования (кристаллизации из расплава или раствора) не содержали свинца; весь наличный в таких минералах свинец накопился в результате распада урана. Используя закон радиоактивного распада, можно по отношению количеств свинца и урана в минерале определить его возраст (см. упражнение 32 в конце главы).

Определенный таким методом возраст минералов различного происхождения, содержащих уран, измеряется сотнями миллионов лет. Возраст древнейших минералов превышает 1,5 миллиарда лет.

Радиоактивные излучения широко используют в диагностике и в терапии заболеваний.

Радионуклидная диагностика или, как его называют, метод меченых атомов используется для определения заболеваний щитовидной железы (с использованием изотопа 131 I). Этот метод также позволяет изучать распределения крови и других биологических жидкостей, диагностировать заболевания сердца и ряда других органов.

Гамма-терапия – это метод лечения онкологических заболеваний с помощью g-излучения. Для этого применяют чаще всего специальные установки, называемые кобальтовыми пушками, в которых в качестве излучающего изотопа используют 66 Со. Применение гамма-излучения высокой энергии позволяет разрушать глубоко расположенные опухоли, при этом поверхностно расположенные органы и ткани подвергаются меньшему губительному действию.

Применятся также радоновая терапия: минеральные воды, содержащие и его продукты, используются для воздействия на кожу (радоновые ванны), органы пищеварения (питье), органы дыхания (ингаляция).

Для лечения онкологических заболеваний применяются a-частицы в комбинации с потоками нейтронов. В опухоль вводят элементы, ядра которых под воздействием потока нейтронов вызывают ядерную реакцию с образованием a-излучения:

.

Таким образом, a-частицы и ядра отдачи образуются в том месте органа, которое необходимо подвергать воздействию.

В современной медицине в диагностических целях используют жесткое тормозное рентгеновское излучение, полученное на ускорителях и имеющее высокую энергию квантов (до нескольких десятков МэВ).

Дозиметрические приборы

Дозиметрическими приборами, или дозиметрами, называют устройства для измерения доз ионизирующих излучений или величин связанных с дозами.

Конструктивно дозиметры из детектора ядерных излучений и измерительного устройства. Обычно они проградуированы в единицах дозы или мощности дозы. В некоторых случаях предусмотрена сигнализация о превышении заданного значения мощности дозы.

В зависимости от используемого детектора различают дозиметры ионизационные, люминесцентные, полупроводниковые, фотодозиметры и др.

Дозиметры могут быть рассчитаны на измерение доз какого-либо определенного вида излучения или регистрацию смешанного излучения.

Дозиметры для измерения экспозиционной дозы рентгеновского и g-излучения или ее мощности называют рентгенометрами.

В качестве детектора у них обычно применяется ионизационная камера. Заряд, протекающий в цепи камеры, пропорционален экспозиционной дозе, а сила тока - ее мощности.

Состав газа в ионизационных камерах, а также вещество стенок, из которых они состоят, подбирают таким, чтобы осуществлялись тождественные условия с поглощением энергии в биологических тканях.

Каждый индивидуальный дозиметр представляет собой миниатюрную цилиндрическую камеру, которая предварительно заряжается. В результате ионизации происходит разрядка камеры, что фиксируется вмонтированным в нее электрометром. Показания его зависят от экспозиционной дозы ионизирующего излучения.

Существуют дозиметры, детекторами которых являются газовые счетчики.

Для измерения активности или концентрации радиоактивных изотопов применяют приборы, называемые радиометрами .

Общая структурная схема всех дозиметров аналогична той, что изображена на рис.5. Роль датчика (измерительного преобразователя) выполняет детектор ядерных излучений. В качестве выходных устройств могут использоваться стрелочные приборы, самописцы, электромеханические счетчики, звуковые и световые сигнализаторы.


КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называется радиоактивностью? Назовите виды радиоактивности и типы радиоактивного распада.

2. Что называется a-распадом? Какие существуют виды b-распада? Что называется g-излучением?

3. Запишите основной закон радиоактивного распада. Поясните все величины, входящие в формулу.

4. Что называется постоянной распада? периодом полураспада? Напишите формулу, связывающую эти величины. Поясните все величины, входящие в формулу.

5. Какое действие оказывают ионизирующие излучения на биологическую ткань?

7. Приведите определения и формулы поглощенной, экспозиционной и эквивалентной (биологической) доз радиоактивного излучения, их единицы измерения. Поясните формулы.

8. Что такое коэффициент качества? От чего зависит коэффициент качества ? Приведите его значения для разных излучений.

9. Какие существуют способы защиты от ионизирующего излучения?

- 111.31 Кб

Введение 3

1 Радиоактивность 5

1.1 Типы радиоактивного распада и радиоактивного излучения 5

1.2 Закон радиоактивного распада 7

излучения 8

1.4 Классификация источников радиоактивного излучения и радиоактивных изотопов 10

2 Методики анализа, основанные на измерении радиоактивности 12

2.1 Использование естественной радиоактивности в анализе 12

2.2 Активационный анализ 12

2.3 Метод изотопного разбавления 14

2.4 Радиометрическое титрование 14

3 Применение радиоактивности 18

3.1 Применение радиоактивных индикаторов в аналитической химии 18

3.2 Применение радиоактивных изотопов 22

Заключение 25

Список использованных источников 26

Введение

Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе.

Основными достоинствами аналитических методов, основанных на измерении радиоактивного излучения, являются низкий порог обнаружения анализируемого элемента и широкая универсальность. Радиоактивационный анализ имеет абсолютно низший порог обнаружения среди всех других аналитических методов (10 -15 г). Достоинством некоторых радиометрических методик является анализ без разрушения образца, а методов, основанных на измерении естественной радиоактивности, - быстрота анализа. Ценная особенность радиометрического метода изотопного разведения заключена в возможности анализа смеси близких по химико-аналитическим свойствам элементов, таких, как цирконий - гафний, ниобий - тантал и др.

Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью так называемых манипуляторов в специальных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.

Радиоактивные изотопы применяются в следующих методах анализа:

  1. метод осаждения в присутствии радиоактивного элемента;
  2. метод изотопного разбавления;
  3. радиометрическое титрование;
  4. активационный анализ;
  5. определения, основанные на измерении радиоактивности изотопов, встречающихся в природе.

В лабораторной практике радиометрическое титрование применяют сравнительно редко. Применение активационного анализа связано с использованием мощных источников тепловых нейтронов, и поэтому этот метод имеет пока ограниченное распространение.

В данной курсовой работе рассмотрены теоретические основы методов анализа, в которых используется явление радиоактивности, и их практическое применение.

1 Радиоактивность

1.1 Типы радиоактивного распада и радиоактивного излучения

Радиоактивность - это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.

Открытие радиоактивности относится к 1896г., когда А. Беккерель обнаружил, что уран самопроизвольно испускает излучение, названное им радиоактивным (от. radio – излучаю и activas – действенный).

Радиоактивное излучение возникает при самопроизвольном распаде атомного ядра. Известно несколько типов радиоактивного распада и радиоактивного
излучения.

Ra → Rn + He ;

U → Th + α (He).

В соответствии с законом радиоактивного смещения, при α-распаде получается атом, порядковый номер которого на две единицы, а атомная масса на четыре единицы меньше, чем у исходного атома.

2) β-Распад. Различают несколько видов β- распада: электронный β-распад; позитронный β-распад; К-захват. При электронном β-распаде, например,

Sn → Y + β - ;

P → S + β - .

нейтрон внутри ядра превращается в протон. При испускании отрицательно заряженной β-частицы порядковый номер элемента возрастает на единицу, а атомная масса практически не меняется.

При позитронном β-распаде из атомного ядра выделяется позитрон (β + -частица), а потом внутри ядра превращается в нейтрон. Например:

Na → Ne + β +

Продолжительность жизни позитрона невелика, так как при столкновении его с электроном происходит аннигиляция, сопровождающаяся испусканием γ-квантов.

При К-захвате ядро атома захватывает электрон из близлежащей электронной оболочки (из К-оболочки) и один из протонов ядра превращается в нейтрон.
Например,

K + e - = Ar + hv

На свободное место в К-оболочке переходит один из электронов внешней оболочки, что сопровождается испусканием жёсткого рентгеновского излучения.

3) Спонтанное деление. Оно характерно для элементов периодической системы Д. И. Менделеева с Z > 90. При спонтанном делении тяжёлые атомы делятся на осколки, которыми обычно являются элементы середины таблицы Л. И. Менделеева. Спонтанное деление и α-распад ограничивают получение новых трансурановых элементов.

Поток α и β-частиц называют соответственно α и β-излучением. Кроме того, известно γ-излучение. Это электромагнитные колебания с очень короткой длиной волны. В принципе, γ-излучение близко к жёсткому рентгеновскому и отличается от него своим внутриядерным происхождением. Рентгеновское излучение при переходах в электронной оболочке атома, а γ-излучение испускает возбуждённые атомы, получившиеся в результате радиоактивного распада (α и β).

В результате радиоактивного распада получаются элементы, которые по заряду ядер (порядковому номеру) должны быть помещены в уже занятые клетки периодической системы элементами с таким же порядковым номером, но другой атомной массой. Это так называемые изотопы. По химическим свойствам их принято считать неразличимыми, поэтому смесь изотопов обычно рассматривается как один элемент. Неизменность изотопного состава в подавляющем большинстве химических реакций иногда называют законом постоянства изотопного состава. Например, калий в природных соединениях представляет собой смесь изотопов, на 93,259% из 39 К, на 6,729% из 41 К и на 0,0119% из 40 К (К-захват и β-распад). Кальций насчитывает шесть стабильных изотопов с массовыми числами 40, 42, 43, 44, 46 и 48. В химико-аналитических и очень многих других реакциях это соотношение сохраняется практически неизменным, поэтому для разделения изотопов химической реакции обычно не применяются. Чаще всего для этой цели используются различные физические процессы – диффузия, дистилляция или электролиз.

Единицей активности изотопа является беккерель (Бк), равный активности нуклида в радиоактивном источнике, в котором за время 1с происходит один акт распада.

1.2 Закон радиоактивного распада

Радиоактивность, наблюдаемая у ядер, существующих в природных условиях, называется естественной, радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной.

Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам - закону радиоактивного превращения:

Если t = 0, то и, следовательно, const = -lg N 0 . Окончательно


где А – активность в момент времени t; А 0 – активность при t = 0.

Уравнения (1.3) и (1.4) характеризуют закон радиоактивного распада. В кинетике они известны как уравнения реакции первого порядка. В качестве характеристики скорости радиоактивного распада обычно указывают период полураспада T 1/2 , который так же, как и λ, является фундаментальной характеристикой процесса, не зависящей от количества вещества.

Периодом полураспада называют промежуток времени, в течение которого данное количество радиоактивного вещества уменьшается наполовину.

Период полураспада различных изотопов существенно различен. Он находится примерно от 10 10 лет до ничтожных долей секунды. Конечно, вещества, имеющие период полураспада 10 – 15 мин. и меньше, использовать в лаборатории трудно. Изотопы с очень большим периодом полураспада также нежелательны в лаборатории, так как при случайном загрязнении этими веществами окружающих предметов потребуется специальная работа по дезактивации помещения и приборов.

1.3 Взаимодействие радиоактивного излучения с веществом и счетчики

излучения

В результате взаимодействия радиоактивного излучения с веществом происходит ионизация и возбуждение атомов и молекул вещества, через которое оно проходит. Излучение производит также световое, фотографическое, химическое и биологическое действие. Радиоактивное излучение вызывает большое число химических реакций в газах, растворах, твердых веществах. Их обычно объединяют в группу радиационно-химических реакций. Сюда относятся, например, разложение (радиолиз) воды с образованием водорода, пероксида водорода и различных радикалов, вступающих в окислительно-восстановительные реакции с растворенными веществами.

Радиоактивное излучение вызывает разнообразные радиохимические превращения различных органических соединений – аминокислот, кислот, спиртов, эфиров и т.д. Интенсивное радиоактивное излучение вызывает свечение стеклянных трубок и ряд других эффектов в твердых телах. На изучении взаимодействия радиоактивного излучения с веществом основаны различные способы обнаружения и измерения радиоактивности.

В зависимости от принципа действия счетчики радиоактивных излучений подразделяют на несколько групп.

Ионизационные счетчики. Их действие основано на возникновении ионизации или газового разряда, вызванного ионизацией при попадании в счетчик радиоактивных частиц или γ-квантов. Среди десятков приборов, использующих ионизацию, типичными являются ионизационная камера и счетчик Гейгера – Мюллера, который получил наибольшее распространение в химико-аналитических и радиохимических лабораториях.

Для радиохимических и других лабораторий промышленностью выпускаются специальные счетные установки.

Сцинтилляционные счетчики. Действие этих счетчиков основано на возбуждении атомов сцинтиллятора γ-квантами или радиоактивной частицей, проходящей через счетчик. Возбужденные атомы, переходя в нормальное состояние, дают вспышку света.

В начальный период изучения ядерных процессов визуальный счет сцинтилляции сыграл большую роль, однако в дальнейшем он был вытеснен более совершенным счетчиком Гейгера – Мюллера. В настоящее время сцинтилляционный метод вновь стал широко применяться уже с использованием фотоумножителя.

Черенковские счетчики. Действие этих счетчиков основано на использовании эффекта Черенкова, который состоит в излучении света при движении заряженной частицы в прозрачном веществе, если скорость частиц превышает скорость света в данной среде. Факт сверхсветовой скорости частицы в данной среде, конечно, не противоречит теории относительности, поскольку скорость света в какой-либо среде всегда меньше, чем в вакууме. Скорость движения частицы в веществе может быть больше скорости света в этом веществе, оставаясь в то же время меньше скорости света в вакууме в полном соответствии с теорией относительности. Счетчики Черенкова применяются для исследовательских работ с очень быстрыми частицами, для исследований в космосе и т.д., поскольку с их помощью может быть определен ряд других важных характеристик частиц (их энергия, направление движения и др.).

1.4 Классификация источников радиоактивного излучения и

радиоактивных изотопов

Источники радиоактивного излучения делят на закрытые и открытые. Закрытые – должны быть герметичны. Открытые – любые негерметичные источники излучения, которые могут создавать радиоактивное загрязнение воздуха, аппаратуры, поверхностей столов, стен и т. п.

При работе с закрытыми источниками необходимые меры предосторожности сводятся к предохранению от внешнего облучения.

Закрытые источники излучения активностью выше 0,2 г-экв. радия должны быть помещены в защитные устройства с дистанционным управлением и устанавливаться в специально оборудованных помещениях.

Краткое описание

Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью так называемых манипуляторов в специальных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.

Содержание

Введение 3
1 Радиоактивность 5
1.1 Типы радиоактивного распада и радиоактивного излучения 5
1.2 Закон радиоактивного распада 7
1.3 Взаимодействие радиоактивного излучения с веществом и счетчики
излучения 8
1.4 Классификация источников радиоактивного излучения и радиоактивных изотопов 10
2 Методики анализа, основанные на измерении радиоактивности 12
2.1 Использование естественной радиоактивности в анализе 12
2.2 Активационный анализ 12
2.3 Метод изотопного разбавления 14
2.4 Радиометрическое титрование 14
3 Применение радиоактивности 18
3.1 Применение радиоактивных индикаторов в аналитической химии 18
3.2 Применение радиоактивных изотопов 22
Заключение 25
Список использованных источников 26