1 матрица определение виды. Матрицы. Виды матриц. Операции над матрицами и их свойства

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Определение Матрицей – называется таблица чисел содержащая определенное количество строк и столбцов

Элементами матрицы являются числа вида a ij , где i- номер строки j- номер столбца

Пример 1 i = 2 j = 3

Обозначение: А=

Виды матриц:

1. Если число строк не равно числу столбцов , то матрица называется прямоугольной:

2. Если число строк равно числу столбцов , то матрица называется квадратной:

Число строк или столбцов квадратной матрицы называется ее порядком . В примере n = 2

Рассмотрим квадратную матрицу порядка n:

Диагональ, содержащая элементы a 11 , a 22 ……., a nn , называетсяглавной, а диагональ, содержащая элементы а 12 , а 2 n -1 , …….a n 1 – вспомогательная.

Матрица, у которой отличны от нуля только элементы, находящиеся на главной диагонали, называется диагональной :

Пример 4 n = 3

3. Если у диагональной матрицы элементы равны 1, то матрица называется единичной и обозначается буквой Е:

Пример 6 n = 3

4. Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается буквой О

Пример 7

5. Треугольной матрицей n-ого порядка называется квадратная матрица, все элементы которой, расположенные ниже главной диагонали, равны нулю:

Пример 8 n = 3

Действия над матрицами:

Суммой матрицы А и В называется такая матрица С, элементы которой равны сумме соответствующих элементов матриц А и В.

Складывать можно только матрицы, имеющие одинаковые число строк и столбцов.

Произведением матрицы А на число k называется такая матрица kA, каждый элемент которой равен ka ij

Пример10

Умножение матрицы на число сводится к умножению на это число всех элементов матрицы.

Произведение матриц Что бы умножить матрицу на матрицу, необходимо выбрать первую строку первой матрицы и умножить на соответствующие элементы первого столбца второй матрицы, результат сложить. Этот результат расположить в результатирующей матрице в 1-ой строке и 10ом столбце. Аналогично выполняем действия со всеми остальными элементами: 1-ую строку на второй столбец, на 3-ий и т.д., затем со следующими строками.

Пример 11

Умножение матрицы А на матрицу В возможно только в том случае, если число столбцов первой матрицы равно числу строе второй матрицы.

- произведение существует;

- произведение не существует

Примеры 12 последнюю строчку во II матрицы умножать не с чем, т.е. произведение не существует

Транспонирование матрицы называется операция замены элементов строки на элементы столбца:

Пример13

Возведением в степень называется последовательное перемножение матрицы саму на себя.


Термин « матрица » имеет много значений. Например, в математике матрицей называется система элементов, имеющая вид прямоугольной таблицы, в программировании матрица - это двумерный массив, в электронике - набор проводников, которые можно замкнуть в точках их пересечений. Покерные фишки также имеют непосредственное отношение к матрице. Фишки для покера изготавливаются из высококачественного композиционного материала, зачастую с металлической сердцевиной. В свою очередь композиционный материал или композит имеет матрицу и включенные в нее армирующие элементы (исключение составляют слоистые композиты).
Матрица в фотографии – это интегральная микросхема (аналоговая или цифро-аналоговая), которая состоит из фотодиодов (светочувствительных элементов). Благодаря светочувствительной матрице происходит преобразование спроецированного на нее оптического изображения в электрический сигнал аналогового типа, а при наличии в составе матрицы АЦП, то преобразование происходит в поток цифровых данных.
Матрица - основной элемент цифровых фотоаппаратов, всех современных видео- и телекамер, фотокамер, встроенных в мобильный телефон и системы видеонаблюдения.

Основное значение термин «матрица» имеет в математике.

Ма́трица - математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.

Впервые матрицы упоминались ещё в древнем Китае, называясь тогда «волшебным квадратом». Основным применением матриц было решение линейных уравнений. Так же, волшебные квадраты были известны чуть позднее у арабских математиков, примерно тогда появился принцип сложения матриц. После развития теории определителей в конце 17-го века, Габриэль Крамер начал разрабатывать свою теорию в 18-ом столетии и опубликовал «правило Крамера» в 1751 году. Примерно в этом же промежутке времени появился «метод Гаусса». Теория матриц начала своё существование в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Вейерштрассу, Жордану, Фробениусу. Термин «матрица» ввел Джеймс Сильвестр в 1850 г.

Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов - количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами.

Матрицы допускают следующие алгебраические операции:

  • сложение матриц, имеющих один и тот же размер;
  • умножение матриц подходящего размера (матрицу, имеющую nстолбцов, можно умножить справа на матрицу, имеющую nстрок);
  • умножение матрицы на элемент основного кольца или поля (т. е. скаляр ).

Матрица – множество чисел, образующих прямоугольную таблицу, которая содержит m - строк и n - столбцов. Для обозначения матрицы используется надпись:

а ij , где i - номер строки, j - номер столбца

Матрицы С и D имеют размеры 3х3 и 2х2. В том случае, когда количество строк матрицы равняется количеству ее столбцов, матрица называется квадратной. Значит матрица C - квадратная матрица третьего порядка, а матрица D - квадратная матрица второго порядка.

Матрица, которая содержит только одну строчку или один столбец называется вектором. В таких матрицах можновыделить вектор-строка и вектор-столбец. Так, матрица K - это вектор-строка, а матрица F - вектор-столбец.

Квадратная матрица, у которой в главной диагонали стоят ненулевые элементы, а все остальные - нули называется диагональной матрицей. Матрица L - диагональная матрица третьего порядка. Если ненулевые элементы равны только единицам, то это единичная матрица, она всегда обозначается буквой Е. В нашем случае матрица Е - тоже единичная матрицатретьего порядка.

Если все элементы матрицы нули, то это нулевая матрица. Например, матрица V - нулевая матрица третьего порядка.

Если в данной матрице поменять строки и столбцы местами, то получится транспонированная матрица данной. Например, дана матрица М, каждую строчку этой матрицы перенесем в соответствующий столбец матрицы, стоящей на рисунке рядом. Вторая матрица - это транспонированная матрица матрицы М.

К середине XIX в. матрицы стали самостоятельными объектами математических исследований. К этому времени были сформулированы правила сложения и умножения матриц. Основную роль в их разработке сыграли работы Гамильтона, Кэли и Сильвестра (J.J.Sylvester, 1814-1897). Современное обозначение матрицы предложил Кэли в 1841 году. Исследования Вейерштрасса (K.Th.W.Weierstrass, 1815-1897) и Фробениуса (F.G.L. Frobenius, 1849-1917) далеко продвинули теорию матриц, обогатив ее новым содержанием.

Но существует ещё особая разновидность матриц, называемая магическим квадратом. Магический квадрат - квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.

Магический квадрат – древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок. 2200 до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы и эти знаки известны под названием лошу и равносильны магическому квадрату. В 11 в. о магических квадратах узнали в Индии, а затем в Японии, где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э.Мосхопулос. Первым квадратом, придуманным европейцем, считается квадрат А.Дюрера изображенный на его знаменитой гравюре Меланхолия 1 . Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. В 16 в. Корнелий Генрих Агриппа построил квадраты 3-го, 4-го, 5-го, 6-го, 7-го, 8-го и 9-го порядков, которые были связаны с астрологией 7 планет. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.

В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления.

Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де лаЛубера. Рассмотрим этот метод на примере квадрата 5-го порядка. Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата (как в случае числа 1), продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца. Дойдя до правого края квадрата (число 3), продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки (число 5) или угла (число 15), траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.

Где ещё применяются матрицы?

Таблица умножения - это произведение матриц (1,2,3,4,5,6,7,8,9)Т ×(1,2,3,4,5,6,7,8,9).

В физике и других прикладных науках матрицы – являются средством записи данных и их преобразования. В программировании - в написании программ. Они еще называются массивами. Широко применение и в технике. Например, любая картинка на экране - это двумерная матрица, элементами которой являются цвета точек.

В психологии понимание термина сходно с данным термином в математике, но взамен математических объектов подразумеваются некие "психологические объекты" - например, тесты.

Кроме того, матрицы имеет широкое применение в экономике, биологии, химии и даже в маркетинге.

Также авторы нашли абстрактную модель - теорию бракосочетаний в первобытном обществе, где с помощью матриц были показаны разрешенные варианты браков для представителей и даже потомков того или иного племени, что явилось свидетельством разнопланового применения матриц.

Теперь подробнее остановимся на некоторых областях применения матриц.

Рассмотрим теорию бракосочетаний, о которой уже упоминалось.

В некоторых первобытных обществах существуют строгие правила относительно того, в каких случаях допустимы браки. Эти правила направлены на предотвращение браков между слишком близкими родственниками.

Эти правила допускают точную математическую формулировку в терминах «p-матриц». Одним из первых изложил эти правила в виде аксиом Андре Вейль.

Правила бракосочетания характеризуются следующими аксиомами:

  • Аксиома 1: каждому члену общества приписывается определенный брачный тип.
  • Аксиома 2: двум индивидуумам разрешается вступать в брак тогда и только тогда, когда они принадлежат к одному и тому же брачному типу.
  • Аксиома 3: тип индивидуума определяется полом индивидуума и типом его родителей.
  • Аксиома 4: два мальчика (или две девочки), родители которых принадлежат к разным типам, сами принадлежат к разным типам.
  • Аксиома 5: правила, разрешающие или не разрешающие мужчине вступить в брак со своей родственницей, зависят только от вида родства. В частности, мужчине не разрешается жениться на своей сестре.
  • Аксиома 6: для любых двух индивидуумов можно указать таких их потомков, которым разрешается вступать в брак.

Из аксиом следует, что нужно задать зависимость между типом родителей и типами сыновей и дочерей.

Для установления отношения родства пользовались следующими обозначениями:

Вот примеры видов отношений:

Понятие матрицы и основанный на нем раздел математики - матричная алгебра - имеют чрезвычайно важное значение для экономистов. Объясняется это тем, что значительная часть математических моделей экономических объектов и процессов записывается в достаточно простой, а главное - компактной матричной форме.

С помощью матриц удобно записывать некоторые экономические зависимости.

Например, рассмотрим таблицу распределения ресурсов по отдельным отраслям экономики (усл. ед.):

Данная таблица может быть записана в компактной форме в виде матрицы распределения ресурсов по отраслям:

В данной записи, например, матричный элемент = 5,3 показывает, сколько электроэнергии употребляет промышленность, а элемент = 2,1 - сколько трудовых ресурсов потребляет сельское хозяйство.

Прогрессивные матрицы Равена- тест на наглядное и в то же время абстрактное мышление по аналогии (тест интеллекта) , разработанный англ. психологом Дж. Равеном (1938).

Каждая задача состоит из 2 частей: основного рисунка (какого-либо геометрического узора) с пробелом в правом нижнем углу и набора из 6 или 8 фрагментов, находящихся под основным рисунком. Из этих фрагментов требуется выбрать один, который, будучи поставленным на место пробела, точно подходил бы к рисунку в целом. Прогрессивные матрицы Равена разделяются на 5 серий по 12 матриц в каждой. Благодаря увеличению числа элементов матриц и усложнению принципов из взаимоотношений задачи постепенно усложняются как в пределах одной серии, так и при переходе от серии к серии. Имеется также облегченный вариант прогрессивных матриц Равена, предназначенный для исследования детей и взрослых с нарушениями психической деятельности.

На рисунке показаны примеры таких матриц:

Мы рассмотрели основные области применения матриц. Выяснилось, что данный термин употребляется не только в математике, но и в других науках, таких, как информатика, биология, химия, физика, психология, экономика и т. д. Кроме того, матрицы могут быть практически применимы, например, как это делали в первобытном обществе для определения разрешённых вариантов брака.

МАТРИЦА- (нем., Matrize, от лат. matrix матка). 1) в литейном производстве: медная форма для отливки букв, а также монет. 2) в типографском деле: бумажная форма для отливки стереотипа.

С помощью матриц можно решать системы уравнений, в них удобно представлять какие-либо данные.

Таким образом, мы пришли к выводу, что матрицы широко применялись и применяются до сих пор.

Литература:

  1. Красс М.С., Чупрынов Б.П.; Математика, Питер, 2005.
  2. Солодовников А.С., Бабайцев В.А., Браилов А.В., Шандра И.Г.; Финансы и статистика, 2000.
  3. Кремер Н.Ш.; ЮНИТИ-ДАНА, Высшая математика для экономистов, 3-е издание, 2007.
  4. Венгер А.Л. - Психологические рисуночные тесты: Иллюстрированное руководство.
  5. Энциклопедический словарь юного математика. – М.: Педагогика, 1989.

Матрицей размера m ? n называется прямоугольная таблица чисел, содержащих m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными буквами латинского алфавита (A,B,C…) , а для обозначения элементов матрицы используются строчные буквы с двойной индексацией:

Где i - номер строки, j - номер столбца.

Например, матрица

Или в сокращённой записи, A=(); i =1,2…, m ; j=1,2, …, n.

Используются другие обозначения матрицы например: , ? ?.

Две матрицы А и В одного размера называются равными , если они совпадают поэлементно,т.е. = , где i= 1, 2, 3, …, m , а j = 1, 2, 3, …, n.

Рассмотрим основные типы матриц:

1. Пусть m = n, тогда матрица А - квадратная матрица, которая имеет порядок n:

Элементы образуют главную диагональ, элементы образуют побочную диагональ.

Квадратная матрица называется диагональной , если все ее элементы, кроме, возможно, элементов главной диагонали, равны нулю:

Диагональная, а значит квадратная, матрица называется единичной , если все элементы главной диагонали равны 1:

Заметим, что единичная матрица является матричным аналогом единицы во множестве действительных чисел, а также подчеркнем, что единичная матрица определяется только для квадратных матриц.

Приведем примеры единичных матриц:

Квадратные матрицы


называются верхней и нижней треугольными соответственно.

  • 2. Пусть m = 1, тогда матрица А - матрица-строка, которая имеет вид:
  • 3. Пусть n =1, тогда матрица А - матрица-столбец, которая имеет вид:

4. Нулевой матрицей называется матрица порядка mn, все элементы которой равны 0:

Заметим, что нулевая матрица может быть квадратной, матрицей-строкой или матрицей-столбцом. Нулевая матрица есть матричный аналог нуля во множестве действительных чисел.

5. Матрица называется транспонированной к матрице и обозначается, если ее столбцы являются соответствующими по номеру строками матрицы.

Пример . Пусть

Заметим, если матрица А имеет порядок mn , то транспонированная матрица имеет порядок nm .

6. Матрица А называется симметричной, если А=, и кососимметричной, если А = .

Пример . Исследовать на симметричность матрицы А и В .

следовательно, матрица А - симметричная, так как А = .

следовательно, матрица В - кососимметричная, так как В = - .

Заметим, что симметричная и кососимметричная матрицы всегда квадратные. На главной диагонали симметричной матрицы могут стоять любые элементы, а симметрично относительно главной диагонали должны стоять одинаковые элементы, то есть На главной диагонали кососимметричной матрицы всегда стоят нули, а симметрично относительно главной диагонали

матрица квадратный лаплас аннулирование

Заметим, что элементами матрицы могут быть не только числа. Представим себе, что вы описываете книги, которые стоят на вашей книжной полке. Пусть у вас на полке порядок и все книги стоят на строго определенных местах. Таблица , которая будет содержать описание вашей библиотеки (по полкам и следованию книг на полке), тоже будет матрицей. Но такая матрица будет не числовой. Другой пример. Вместо чисел стоят разные функции, объединенные между собой некоторой зависимостью. Полученная таблица также будет называться матрицей. Иными словами, Матрица , это любая прямоугольная таблица , составленная из однородных элементов. Здесь и далее мы будем говорить о матрицах, составленных из чисел.

Вместо круглых скобок для записи матриц применяют квадратные скобки или прямые двойные вертикальные линии


(2.1*)

Определение 2 . Если в выражении (1) m = n , то говорят о квадратной матрице , а если , то о прямоугольной .

В зависимости от значений m и n различают некоторые специальные виды матриц:

Важнейшей характеристикой квадратной матрицы является ее определитель или детерминант , который составляется из элементов матрицы и обозначается

Очевидно, что D E =1 ; .

Определение 3 . Если , то матрица A называется невырожденной или не особенной .

Определение 4 . Если detA = 0 , то матрица A называется вырожденной или особенной .

Определение 5 . Две матрицы A и B называются равными и пишут A = B , если они имеют одинаковые размеры и их соответствующие элементы равны, т.е .

Например, матрицы и равны, т.к. они равны по размеру и каждый элемент одной матрицы равен соответствующему элементу другой матрицы. А вот матрицы и нельзя назвать равными, хотя детерминанты обеих матриц равны, и размеры матриц одинаковые, но не все элементы, стоящие на одних и тех же местах равны. Матрицы и разные, так как имеют разный размер. Первая матрица имеет размер 2х3, а вторая 3х2. Хотя количество элементов одинаковое – 6 и сами элементы одинаковые 1, 2, 3, 4, 5, 6, но они стоят на разных местах в каждой матрице. А вот матрицы и равны, согласно определению 5.

Определение 6 . Если зафиксировать некоторое количество столбцов матрицы A и такое же количество ee строк, тогда элементы, стоящие на пересечении указанных столбцов и строк образуют квадратную матрицу n - го порядка, определитель которой называется минором k – го порядка матрицы A .

Пример . Выписать три минора второго порядка матрицы